ABSTRACT: Cardiac arrest occurs at a higher rate in children with heart disease than in healthy children. Pediatric basic life support and advanced life support guidelines focus on delivering high-quality resuscitation in children with normal hearts. The complexity and variability in pediatric heart disease pose unique challenges during resuscitation. A writing group appointed by the American Heart Association reviewed the literature addressing resuscitation in children with heart disease. MEDLINE and Google Scholar databases were searched from 1966 to 2015, cross-referencing pediatric heart disease with pertinent resuscitation search terms. The American College of Cardiology/American Heart Association classification of recommendations and levels of evidence for practice guidelines were used. The recommendations in this statement concur with the critical components of the 2015 American Heart Association pediatric basic life support and pediatric advanced life support guidelines and are meant to serve as a resuscitation supplement. This statement is meant for caregivers of children with heart disease in the prehospital and in-hospital settings. Understanding the anatomy and physiology of the high-risk pediatric cardiac population will promote early recognition and treatment of decompensation to prevent cardiac arrest, increase survival from cardiac arrest by providing high-quality resuscitations, and improve outcomes with postresuscitation care.

Bradley S. Marino, MD, MPP, MSCE, FAHA, Co-Chair
Sarah Tabbutt, MD, PhD
Graeme MacLaren, MBBS, FAHA
Mary Fran Hazinski, MSN, RN, FAHA
Ian Adatia, MBChB
Dianne L. Atkins, MD, FAHA
Paul A. Checchia, MD
Allan DeCaen, MD
Erin L. Fink, MD, MS, FAHA
George M. Hoffman, MD
John L. Jefferies, MD, MPH, FAHA
Monica Kleinman, MD
Catherine D. Krawczeski, MD, FAHA
Daniel J. Licht, MD
Duncan Macrae, MD
Chitra Ravishankar, MD
Ricardo A. Samson, MD
Ravi R. Thiagarajan, MBBS, MPH
Rune Toms, MD
James Tweddell, MD, FAHA
Peter C. Laussen, MBBS, Co-Chair
On behalf of the American Heart Association Congenital Cardiac Defects Committee of the Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; and Emergency Cardiovascular Care Committee

Key Words: AHA Scientific Statements arrhythmias cardiopulmonary arrest cardiopulmonary resuscitation cardiopulmonary resuscitation methods extracorporeal membrane oxygenation heart defects, congenital heart defects, congenital/surgery

© 2018 American Heart Association, Inc.

http://circ.ahajournals.org
The American Heart Association (AHA) has published guidelines for pediatric basic life support since 1980 and for pediatric advanced life support (PALS) since 1986. These guidelines have been based on research involving both animals and infants, children, and adult human subjects and provide recommendations for resuscitation of infants and children with structurally normal hearts. The most recent guidelines update, published in 2015, focused on the quality of cardiopulmonary resuscitation (CPR), with an emphasis on minimizing interruptions in chest compressions, providing adequate rate and depth of compressions, and avoiding excessive ventilation. Although this emphasis is also recommended in infants and children with heart disease, there are additional important considerations. This scientific statement is important for 3 reasons specific to this unique population: (1) The frequency of cardiac arrest is higher in infants and children with congenital heart disease (CHD), and the pathogenesis of these events can differ from infants and children without heart disease; (2) congenital heart defects have a wide variety of hemodynamic and physiological influences on cardiac output, and the specific cardiorespiratory interactions and response to resuscitation can be quite variable; and (3) the response of the neonate and the postoperative patient with complex CHD to pharmacological intervention can differ from the response of infants and children without heart disease.

There is a wide spectrum of cardiac disease in infants and children. Cardiac disease in infants and children is primarily congenital but can be acquired. In many circumstances, the heart defects are surgically corrected or palliated, but blood flow pathways are not normal. Patients can carry the burden of residual lesions or develop new problems over time, with an increased risk of cardiac arrest. This population commonly develops myocardial dysfunction, arrhythmia, and unbalanced pulmonary and systemic circulation. Specific drugs and the indications for administration and dosing can differ for infants and children with heart disease. In addition, there are many variations of CHD, and the underlying physiological substrates can have a significant impact on systemic perfusion and pulmonary blood flow (PBF). An example unique to the spectrum of CHD is the patient with a single ventricle. These patients typically undergo a series of surgical procedures culminating in a unique functional palliation, the modified Fontan operation, in which the systemic venous return is connected directly to the pulmonary circulation and there is no pulmonary ventricle.

The anatomic and physiological substrates of congenital heart defects can limit the effectiveness of conventional CPR. At best, CPR is inefficient, with compressions providing only 10% to 30% of normal blood flow to the heart and 30% to 40% of normal blood flow to the brain. The inherent inefficiency associated with CPR can be further exacerbated in the patient with CHD, in which the underlying anatomy limits effective PBF, systemic blood flow (SBF), and cerebral perfusion. Given these issues, survival after cardiac arrest can be low in infants and children with cardiac disease. To improve resuscitation outcomes, a strong emphasis must be placed on the prearrest phase to prevent cardiac arrest and on the arrest phase to provide high-quality CPR. Use of extracorporeal life support (ECLS) to support failed conventional CPR (ie, extracorporeal cardiopulmonary resuscitation [ECPR]) in highly specialized environments has allowed the resuscitation of some patients who would otherwise have died and could be particularly useful for patients in whom the conditions causing arrest are thought to be potentially reversible (eg, after cardiac surgery) or could be used as a bridge to other therapy, such as heart transplantation.

The purpose of this consensus statement is to highlight the unique aspects of cardiac resuscitation in children with congenital and acquired heart disease and to provide evidence-based recommendations for modifying resuscitation for this high-risk patient population to improve survival. The management of specific phases of cardiac arrest (prearrest, arrest, and postarrest stabilization) is examined, along with gaps in knowledge that highlight future directions for research relevant to the pediatric cardiac population.

The contributors to this scientific statement were selected on the basis of their expertise in disciplines related to the management of children with congenital and acquired heart disease. The writing group for this statement was selected and organized according to the conflict-of-interest management policy of the AHA.

The writing group performed MEDLINE database searches of English-language articles from 1966 to 2015, cross-referencing congenital and acquired heart disease with pertinent MESH search terms, as follows: acute cardiac tamponade; acute kidney injury; adolescent; adult; amiodarone; aortic valve insufficiency/surgery; aortic valve stenosis/congenital; aortic valve stenosis/surgery; aortic valve stenosis/therapy; arrhythmias; cardiac; atropine; bicarbonates; biomarkers; calcium; cardiac arrest; cardiac catheterization; cardiac output; low; cardiac surgical procedures; cardiac tamponade; cardiac tamponade/surgery; cardiopulmonary arrest; cardiopulmonary resuscitation; cardiopulmonary resuscitation/statistics and numerical data; cardiopulmonary resuscitation/methods; catheterization, central venous; catheterization, peripheral; child; clinical alarms; death, sudden; cardiac; diagnosis; echocardiography; echocardiography/methods; echocardiography/mortality; echocardiography/utilization; electrocardiogram; epinephrine; extracorporeal membrane oxygenation; ethics; Fontan procedure; heart arrest; heart arrest/etiology; heart arrest/prevention and control; heart arrest/surgery; heart arrest/therapy; heart defects, con-
genital; heart defects, congenital/classification; heart defects, congenital/complications; heart defects, congenital/diagnosis; heart defects, congenital/etiology; heart defects, congenital/genetics; heart defects, congenital/mortality; heart defects, congenital/pathology; heart defects, congenital/physiology; heart defects, congenital/physiopathology; heart defects, congenital/prevention and control; heart defects, congenital/surgery; heart defects, congenital/therapy; heart diseases; heart failure; hospital rapid response team; hospitals, pediatric; hypertension, pulmonary; hyperthermia; hypothermia; hypoplastic left heart syndrome; infant, newborn; infusions, intraosseous; intensive care units, neonatal; intensive care units, pediatrics; ischemia; isoproterenol; kidney injury; kidney; lidocaine; medical response team; mitral valve insufficiency/surgery; natriuretic peptide, brain; neonatology; nitric oxide; Norwood procedures; out-of-hospital cardiac arrest; patient transfer; pediatric early warning system; pediatrics; pericardial effusion; pericardial tamponade; pericardiectomy; pericardiectomy; pharmacological preparations; phenylephrine; pneumothorax; postpericardiotomy syndrome; pulsus paradoxus; quality; quality improvement; quality of life; radiography, thoracic; resuscitation; resuscitation orders; scimitar syndromesurgery; signs and symptoms; sodium bicarbonate; spectroscopy, near-infrared; sudden death; therapy; transportation of patients; treatment; treatment outcome; vasopressin; ventricular dysfunction, left; ventricular dysfunction, right.

The reference lists of identified articles were also searched. Published abstracts from major pediatric scientific meetings in 2014 and 2015 were also reviewed. Classification of recommendations and levels of evidence were assigned to each recommendation using the 2009 American College of Cardiology/AHA guidelines grading schema (Table 1).9 This classification system combines an objective description of the types of published studies supporting each recommendation and the strength of expert consensus. Statements generated from literature review were drafted by each section’s writing group and presented to the entire writing group for editing and ultimate incorporation into this document.

CURRENT EPIDEMIOLOGY AND SURVIVAL

It is estimated that 16,000 children in the United States experience an out-of-hospital cardiac arrest each year.10 An estimated 5800 experience an in-hospital cardiac arrest each year.11,12 Hospitalized children with cardiovascular disease are at increased risk for cardiac arrest.13 Cardiac arrest requiring resuscitation occurs in ~7 per 1000 hospitalizations of children with cardiovascular disease, a rate >10-fold higher than that observed in children hospitalized without cardiovascular disease.13 The frequency of cardiac arrest is also reported to be higher in dedicated cardiac intensive care units (ICUs) (4% to 6% of admissions) than in medical-surgical pediatric ICUs (2% to 4% of admissions).3,4,14-16 Since 2005, there have been substantial efforts to improve the quality of all CPR, including that provided to children.6,15,16 On the basis of data from the AHA’s Get With The Guidelines–Resuscitation Registry (GWTG-R), formerly the AHA National Registry of Cardiopulmonary Resuscitation, the risk-adjusted rates of survival in children with an in-hospital cardiac arrest have improved nearly 3-fold over a decade (from 14.3% to 43.4% over the period 2000 to 2009).17 In that same registry, survival to hospital discharge of pediatric surgical cardiac patients was higher (37%) than that reported for pediatric medical cardiac (28%) or noncardiac (23%) patients.5 In the Kids’ In-hospital Database (KIDS), survival after cardiac arrest was also higher among pediatric surgical cardiac patients (52%) than among pediatric medical cardiac patients (43%).15 However, children with single-ventricle disease had a lower survival rate (35%) than did children with other forms of cardiovascular disease (45%).18 Possible explanations for the differences in survival relate to the specific causes of arrest, the availability of specialized invasive monitoring, and access to interventions and management subsequent to the arrest.

MANAGEMENT OF THE CRITICAL PATIENT WITH CONGENITAL OR ACQUIRED HEART DISEASE

The purpose of this section of the statement is to highlight anatomic and physiological aspects of specific high-risk cardiac lesions or cardiac diseases that impact prearrest stabilization and resuscitation. Each section on a specific cardiac lesion is concluded with a section on unique challenges in CPR and gaps in knowledge.

Single-Ventricle Lesions

Surgical and Resuscitation Overview

Children with single-ventricle CHD typically undergo a series of staged operations. The aim of the first palliative procedure, typically performed during the neonatal period, is to create unobstructed systemic blood flow, create an effective atrial communication to allow for atrial level mixing, and to regulate PBF to prevent overcirculation and decrease the volume load on the systemic ventricle prior to future staged procedures. For patients with hypoplastic left heart syndrome (HLHs), the stage 1 Norwood palliation typically involves 3 key steps: (1) reconstruction of the aorta and systemic outflow; (2)
atrial septectomy to ensure removal of any restriction to pulmonary venous return; and (3) creation of a source of PBF via either a systemic-to-pulmonary shunt (modified Blalock-Taussig shunt [MBTS]) or a right ventricle (RV)–to–pulmonary artery shunt (RVPAS). Depending on patient and anatomic characteristics, other options to regulate PBF might include placement of a pulmonary artery band across the main pulmonary artery or bilateral pulmonary bands to limit PBF, placement of a systemic-to–pulmonary artery shunt, and placement of a stent across the ductus arteriosus.

During the second stage of palliation, a bidirectional Glenn procedure or hemi-Fontan operation is performed to create a superior cavopulmonary anastomosis (CPA). The superior CPA is typically performed at 3 to 6 months of age and involves the anastomosis of the superior vena cava (SVC) to the pulmonary artery. After creation of the superior CPA, PBF is dependent on the SVC flow, the transpulmonary pressure gradient, and vascular resistance within arterial vascular beds (both cerebral and pulmonary). The third palliative operation, known as the modified Fontan procedure, is typically performed at 2 to 4 years of age. After Fontan completion, all systemic venous return is baffled directly to the pulmonary circulation, and the single (systemic) ventricle preload is dependent on passive flow across

Table 1. Applying Classification of Recommendations and Level of Evidence

<table>
<thead>
<tr>
<th>CLASS I</th>
<th>Benefit >> Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedure/Treatment SHOULD be performed/</td>
<td></td>
</tr>
<tr>
<td>administered</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>CLASS IIa</td>
<td>Benefit >> Risk</td>
</tr>
<tr>
<td>Additional studies with focused objectives needed</td>
<td></td>
</tr>
<tr>
<td>IT IS REASONABLE to perform procedure/administer treatment</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>CLASS IIb</td>
<td>Benefit > Risk</td>
</tr>
<tr>
<td>Additional studies with broad objectives needed; additional registry data would be helpful</td>
<td></td>
</tr>
<tr>
<td>Procedure/Treatment MAY BE CONSIDERED</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>CLASS III No Benefit or CLASS III Harm</td>
<td></td>
</tr>
<tr>
<td>Procedure/ Test</td>
<td>Treatment</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LEVEL A</th>
<th>Multiple populations evaluated*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data derived from multiple randomized clinical trials or meta-analyses</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>LEVEL B</td>
<td>Limited populations evaluated*</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Data derived from a single randomized trial or nonrandomized studies</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>LEVEL C</td>
<td>Very limited populations evaluated*</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Only consensus opinion of experts, case studies, or standard of care</td>
<td></td>
</tr>
</tbody>
</table>

A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations such as sex, age, history of diabetes mellitus, history of prior myocardial infarction, history of heart failure, and prior aspirin use.

†For comparative effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.

Suggested phrases for writing recommendations

should

is recommended

is indicated

is useful/effective/beneficial

is reasonable

can be useful/effective/beneficial

is probably recommended or indicated

may/might be considered

may/might be reasonable

usefulness/effectiveness is unknown/unclear/uncertain or not well established

Comparative effectiveness phrases†

treatment/strategy A is recommended/indicated in preference to treatment B

treatment A should be chosen over treatment B

treatment/strategy A is probably recommended/indicated in preference to treatment B

treatment A is recommended/indicated in preference to treatment B

is not recommended

is not indicated

should not be performed/administered/other

is not useful/beneficial/effective

is potentially harmful

causes harm

associated with excess morbidity/mortality

should not be performed/administered/other

Downloaded from http://circ.ahajournals.org/ by guest on April 23, 2018
the pulmonary vascular bed without the benefit of a pulmonary ventricle.

Specific anatomy and cardiopulmonary interactions have a significant impact on resuscitation of the child with single-ventricle anatomy. Table 2 delineates various resuscitation profiles for the structurally normal heart and the unique single-ventricle palliated states. The circulation is described, and the impact of chest compressions, chest recoil, and positive-pressure ventilation is discussed.

Single-Ventricle Palliation: Perioperative Management

Risk Factors for Cardiac Arrest and Death

The following factors have been identified as contributing to early death in the neonate or infant with single ventricle: (1) anatomic diagnosis of HLHS, total anomalous pulmonary venous connection (TAPVC), and pulmonary atresia with intact ventricular septum with RV-dependent coronary circulation; (2) decreased ventricular function; (3) hemodynamically significant semilunar or atrioventricular valve insufficiency; and (4) comorbidities including prematurity and genetic syndrome.18–21

Neonates with single-ventricle physiology have an increased risk of cardiac arrest as the result of (1) increased myocardial work as a consequence of volume overload, (2) imbalances in relative systemic and PBF, and (3) potential shunt occlusion.3,4,22–24 The risk of cardiac arrest remains high until the superior CPA is created.25–27 For patients with HLHS, the frequency of in-hospital cardiac arrest after stage 1 Norwood palliation is lower after placement of an RVPAS than after creation of an MBTS.26–29 Although interestingly, there is no difference in hospital mortality relative to shunt type.20,26,31 The Single Ventricle Reconstruction Trial reported a 12-month 31% incidence of death or transplantation after stage 1 Norwood for HLHS,26 with most serious adverse events occurring between 30 days after the stage 1 palliation and the time of the superior CPA procedure. As a result, the interstage period before the superior CPA can be characterized as a prearrest state that requires active monitoring and intervention to improve survival.23

Assessment of Systemic Oxygen Balance

Organ dysfunction, reversible and irreversible injury, and mortality can occur secondary to reduced systemic oxygen delivery (Do2). Abnormalities in systemic oxygen balance can be detected through monitoring of the systemic venous oxygen saturation (SvO2) and the arteriovenous oxygen content or saturation difference (AVO2D).32 Monitoring devices to detect low systemic Do2 and guide intervention can be invasive, such as indwelling SVC oximetric catheters,19,33–35 or noninvasive multisite near-infrared spectroscopy (NIRS).36–43 With arterial pulse oximetry and quasi-mixed venous NIRS, continuous, noninvasive measurement of the dynamic ratio of PBF to SBF (Qp:Qs) can be estimated, cardiac output can be estimated, and interventions can be targeted. These measurements can be confirmed periodically with measured systemic arterial O2 saturation and an SvO2 sample from the SVC.36–39 or (less preferably) the inferior vena cava (IVC).44 Although O2 saturation in the IVC has been correlated with adverse events in the postoperative pe-

<table>
<thead>
<tr>
<th>Physiology</th>
<th>Circulation Description</th>
<th>Circulation of Blood</th>
<th>Chest Compressions</th>
<th>Chest Recoil</th>
<th>Positive-Pressure Ventilation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structurally normal heart</td>
<td>Two-ventricle series circulation without heart disease</td>
<td>Systemic veins – lungs – pulmonary veins – body</td>
<td>1. RV compression results in PBF</td>
<td>Increases the transthoracic gradient from the systemic veins to the RA, increasing RV filling</td>
<td>Decreases the transthoracic gradient from the systemic veins to the RA, decreasing RV filling</td>
</tr>
<tr>
<td>Stage 1 Norwood or shunted physiology</td>
<td>Single-ventricle parallel circulation with shunt-dependent PBF</td>
<td>Systemic veins – single ventricle – lungs (via shunt) or body</td>
<td>Single-ventricle compression results in PBF (shunt ± PVR) and SBF (SVR)</td>
<td>Increases filling to the preload-dependent single ventricle</td>
<td>Decreases filling to the preload-dependent single ventricle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. SVC flow dependent on cerebral vascular resistance and PVR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fontan</td>
<td>Single-ventricle series circulation</td>
<td>Systemic veins – lungs – pulmonary veins – body</td>
<td>Single-ventricle compression results in SBF</td>
<td>1. Predominantly fills the PAs with IVC blood flow (PVR)</td>
<td>Decreases filling to the single ventricle by impeding both SVC and IVC flow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2. SVC flow dependent on cerebral vascular resistance and PVR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IVC indicates inferior vena cava; LV, left ventricle; PA, pulmonary artery; PBF, pulmonary blood flow; PVR, pulmonary vascular resistance; RA, right atrium; RV, right ventricle; SBF, systemic blood flow; SVC, superior vena cava; and SVR, systemic vascular resistance.
period after stage 1 Norwood, O₂ saturation in the SVC is thought to be a better surrogate for the true mixed Svo₂.

In patients with obligate left-to-right atrial shunting, blood sampled from the systemic atrium can have a saturation that is very close to the systemic arterial saturation, so the SVC saturation is most representative of systemic Svo₂. Given that pulmonary venous saturation is not typically measured, the calculation of Qp:Qs based on the arterial and Svo₂ saturation from the SVC requires an assumption of the pulmonary venous O₂ saturation. If there is concurrent pulmonary venous de-saturation from intrapulmonary shunt or low supplementary O₂, there will be an overestimation of the pulmonary venous O₂ saturation and underestimation of the Qp:Qs. Notwithstanding the issues related to an assumed pulmonary venous O₂ saturation, the use of systemic arterial O₂ saturation and Svo₂ to guide acute pharmacological interventions during high-risk periods is associated with improved outcomes.

NIRS provides a noninvasive measurement of regional oxygen economy (ie, balance between Do₂ and consumption). NIRS monitoring is suitable for longer-term use or during periods of possible hemodynamic instability (eg, agitation, fever, intercurrent illness, infection, dehydration, new or worsening ventricular dysfunction, new or worsening moderate or greater neo-aortic insufficiency or atroventricular valve regurgitation) to help quantify and trend early acute hemodynamic instability and to monitor response to therapy, ideally avoiding deterioration and cardiac arrest.

Although both Svo₂ and NIRS monitoring fulfill criteria for potential goal-directed measures in high-risk patient populations, there is variation in their application. Because disorders that start with low cardiac output, high Qp:Qs, or low Qp:Qs will ultimately result in inadequate Do₂, the antecedent cause of arrest might not be obvious once arrest has ensued. Physiological information from the prearrest state is useful for diagnosing pathogenesis and reversible causes of arrest and can guide resuscitation in the arrest and postarrest states.

Pathogenesis, Recognition, and Treatment of Hemodynamic Compromise

Assessment of Cardiac Output. Inadequate acute and chronic systemic Do₂ results in organ dysfunction, ischemic injury, or both. To achieve normal Do₂ in the presence of parallel pulmonary and systemic circulations, the single ventricle needs to produce at least twice normal cardiac output, and as a result, it has limited ability to further increase cardiac output and Do₂ in response to increased oxygen demand.

A reduction in cardiac output increases the AVo₂D. The presence of intracardiac mixing and reduced PBF also contributes to a reduction in arterial oxygen content and reduced Do₂ and therefore a higher risk of anaerobic metabolism. The risk of inadequate cardiac output is increased in the early postoperative period and during periods of increased oxygen demand, such as from agitation, fever, inflammation, and pain. Postoperative ischemia-reperfusion injury and mural edema can reduce diastolic and systolic function and stroke volume, resulting in heart rate and preload dependence and risk of rapid deterioration.

Inadequate cardiac output can be detected by close observation of trends and changes in continuously measured hemodynamic variables (eg, invasive systemic arterial and central venous pressures [CVPs], heart rate), physical examination, and specific laboratory tests. Laboratory data that can reveal inadequate cardiac output include direct or estimated measurements of Svo₂, arterial blood gas analysis, and serum lactate assessment. The ECG can document the presence of ischemia or arrhythmias that can cause or result from low cardiac output. Echocardiography can elucidate systolic and diastolic function, residual anatomic lesions, and pericardial fluid.

Both physical findings and detection of residual lesions can enable early intervention to prevent or treat low cardiac output. The strength of palpable peripheral pulses, however, can be a misleading physical finding in patients who have aortic runoff through the MBTS, because pulses can remain palpable even when cardiac output is compromised. In addition, high sympathetic tone will usually preserve systolic blood pressure despite a fall in cardiac output, systemic perfusion, and Do₂ to the tissues. An inadequate coronary perfusion pressure caused by a high atrial filling pressure and low aortic diastolic blood pressure can result in myocardial ischemia that can rapidly progress to cardiac arrest unless it is recognized promptly and treated effectively.

It is critical to identify residual surgical lesions, most importantly arch obstruction or a restrictive atrial septum, or new hemodynamically significant systemic atroventricular or neo-aortic valve insufficiency. ECLS should be considered for patients in a low cardiac output state that is unresponsive to medical management. Hemodynamic compromise in a shunt-dependent physiology can typically be reversed with inotropic support, preload modification, mechanical ventilation and sedation/analgesia, manipulation of systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR), and anticoagulation if shunt obstruction is suspected.

Balancing SBF and PBF. When the balance of the patient’s PBF and SBF is maintained through a patent ductus arteriosus, aortopulmonary shunt, or direct communication between the aorta and pulmonary artery (eg, aortopulmonary window, truncus arteriosus), variations in SVR and PVR directly impact Qp:Qs. The circulatory balance is highly dynamic and can vary widely when the infant is awake and active, during illness, and with acute anatomic or hemodynamic changes.
Pulmonary overcirculation, defined as a high Qp:Qs, can result from either high SVR or low PVR. Typically, there is an initial widening of the systemic pulse pressure and high arterial saturation, with a later reduction in arterial saturation resulting from worsening systemic venous desaturation. The initial symptoms of a high Qp:Qs include tachypnea and tachycardia. The tachypnea results from increased pulmonary interstitial edema and poor lung compliance associated with elevated pulmonary venous pressure. The tachycardia represents an attempt to increase cardiac output to meet systemic oxygen requirements. Signs and symptoms of shock develop once a critical reduction of SBF is present. The development of a prearrest state can be heralded by lactic acidosis, renal insufficiency, gut ischemia and feeding intolerance, or ECG changes consistent with coronary ischemia. The risk of high Qp:Qs is increased in patients with a large shunt size relative to body weight. In the vulnerable patient, any increase in SVR can cause rapid deterioration from a state of adequate circulatory balance to one of extreme pulmonary overcirculation and shock. In these patients, high SVR will in turn cause increased Qp:Qs, and the resulting fall in SBF causes further sympathetic activation in a harmful feedback loop. Manipulation of PVR. If the shunt is inadequately restrictive, maneuvers to increase PVR by manipulating ventilation and gas exchange might not be well tolerated and could contribute to further deterioration and even cardiac arrest. In the period before single-ventricle palliation, cautious use of a hypoxic inspired gas mixture or inspired carbon dioxide with controlled hypoventilation can reduce Qp:Qs, however, a hypoxic inspired gas mixture does not improve Do2. Although the addition of inspired carbon dioxide with controlled hypoventilation can increase PVR, narrow the AVo2D, and increase cerebral oxygen saturation and Do2, this intervention is not commonly recommended and should only be used as a temporizing measure until surgical intervention can create regulated PBF. Simple hypoventilation can also increase the PVR but can be associated with unwanted atelectasis or respiratory acidosis. The effects of manipulation of PVR are less important when an appropriately restrictive shunt is in place. In patients with a restrictive shunt, supplementary oxygen administration generally increases Do2 and maintains AVo2D, and the absence of supplementary oxygen may be associated with pulmonary venous desaturation.

Manipulation of SVR. Reducing SVR can favorably modify a high Qp:Qs state, improving cardiac output and Do2. A reduction in SVR will also have the benefit of reducing myocardial wall stress and oxygen demand. Although SVR is not routinely measured, it can be calculated using the Fick principal and measurement of oxygen consumption. The ideal SVR indexed to body surface area has not been determined for infants with single ventricle and will be influenced by other patient-specific variables, including ventricular function, atrioventricular valve function, PVR, and the geometry of the shunt.

After the stage 1 Norwood palliation, systemic vasodilators such as phosphodiesterase inhibitors (milrinone, enoximone) and α-adrenergic blockers (phenoxybenzamine, phentolamine) are associated with both reduced Qp:Qs and increased SvO2. The risk of cardiac arrest or prearrest instability appears to be reduced by periproductive strategies that include α-adrenergic blockade or phosphodiesterase inhibition. Although α-blockade is used in some centers for initial single-ventricle palliation, controlled trials are lacking. For interstage afterload reduction, there appears to be no benefit from routine use of the angiotensin-converting enzyme inhibitor enalapril. The risk of high Qp:Qs is present with both the RVPAS and the MBTS. If the patient with deteriorating SBF caused by a large or inadequately restrictive shunt is not responsive to medical management, consider emergent shunt revision or stabilization with ECLS. Distal arch obstruction will mimic elevated SVR by increasing Qp:Qs, especially in those patients with an MBTS; even mild arch obstruction can be clinically important and warrants consideration for intervention.

Recognition and Management of Shunt Obstruction. There are 3 principal reasons for a lower than expected systemic arterial oxygen saturation after the stage 1 Norwood palliation: (1) inadequate PBF; (2) intrapulmonary shunting and pulmonary venous desaturation; and (3) low mixed SvO2 from a low cardiac output state, decreased oxygen-carrying capacity from anemia, or increased oxygen consumption. Inadequate PBF can result from pulmonary artery hypertension (PAH); however, it occurs more often as a result of inadequate shunt perfusion pressure or mechanical obstruction of the shunt or from pulmonary venous hypertension secondary to pulmonary vein stenosis or restrictive atrial communication.

The constellation of low systemic oxygen saturation that is not responsive to an increase in inspired oxygen with preserved SBF and unchanged AVo2D (initially) should raise concern for shunt obstruction. Additionally, patients receiving mechanical ventilation may demonstrate a fall in end-tidal CO2 (EtCO2) with an increase in the arterial partial pressure of carbon dioxide (Paco2). The estimation of Qp:Qs using systemic arterial oxygen saturation and SvO2 (or SvO2 estimation with NIRS) can add to the physiological evaluation. During the interstage period, the risk of shunt thrombosis can be higher with an MBTS than with an RVPAS. However, in patients with HLHS after stage 1 Norwood palliation, supplementary oxygen administration generally increases Do2 and maintains AVo2D, and the absence of supplementary oxygen may be associated with pulmonary venous desaturation. The constellation of low systemic oxygen saturation that is not responsive to an increase in inspired oxygen with preserved SBF and unchanged AVo2D (initially) should raise concern for shunt obstruction. Additionally, patients receiving mechanical ventilation may demonstrate a fall in end-tidal CO2 (EtCO2) with an increase in the arterial partial pressure of carbon dioxide (Paco2). The estimation of Qp:Qs using systemic arterial oxygen saturation and SvO2 (or SvO2 estimation with NIRS) can add to the physiological evaluation. During the interstage period, the risk of shunt thrombosis can be higher with an MBTS than with an RVPAS. However, in patients with HLHS after stage 1 Norwood palliation, supplementary oxygen administration generally increases Do2 and maintains AVo2D, and the absence of supplementary oxygen may be associated with pulmonary venous desaturation.

The constellation of low systemic oxygen saturation that is not responsive to an increase in inspired oxygen with preserved SBF and unchanged AVo2D (initially) should raise concern for shunt obstruction. Additionally, patients receiving mechanical ventilation may demonstrate a fall in end-tidal CO2 (EtCO2) with an increase in the arterial partial pressure of carbon dioxide (Paco2). The estimation of Qp:Qs using systemic arterial oxygen saturation and SvO2 (or SvO2 estimation with NIRS) can add to the physiological evaluation. During the interstage period, the risk of shunt thrombosis can be higher with an MBTS than with an RVPAS.
palliation, the need for an unplanned shunt intervention is higher with the RVPAS.26

Prophylactic anticoagulation strategies include heparin therapy early after shunt placement, with a transition to aspirin when enteral medications are tolerated.23 In a multicenter observational study, aspirin reduced the risk of shunt thrombosis and death during the first year after placement.71 In a multicenter randomized clinical trial in patients with shunted single-ventricle physiology, a majority of whom were receiving aspirin therapy, the addition of clopidogrel did not reduce the incidence of shunt thrombosis.73

Treatment of acute shunt obstruction can include the following: (1) administration of increased inspired oxygen to maximize alveolar oxygenation; (2) administration of vasoactive agents to maximize shunt perfusion pressure (eg, phenylephrine, norepinephrine, epinephrine); (3) anticoagulation with heparin (50–100 U/kg bolus) to prevent clot propagation12,24; (4) shunt intervention by catheterization or surgery; and (5) stabilization with ECLS. In patients with shunt obstruction, maneuvers to decrease PVR (eg, oxygen, inhaled nitric oxide [iNO]) will provide little benefit and could delay the diagnosis of the actual problem. Reduction in oxygen consumption can be accomplished through sedation and neuromuscular blockade, avoidance of hyperthermia, the insertion of an advanced airway, and mechanical ventilation at low mean airway pressure.70 In the early postoperative period, it may be useful to emergently open the sternum to rule out tamponade and to inspect the aortopulmonary or RVPAS. If the shunt obstruction produces persistent and profound arterial hypoxemia, myocardial performance will deteriorate rapidly. The outcome of ECPR in the circumstance of acute shunt obstruction is favorable, provided it is undertaken promptly.7,29,34–77

Systemic Illness and the Interstage Period. Other noncardiac causes of arrest or prearrest in patients with shunted physiology include dehydration, infection, and anemia. Each of these contributes to inadequate DO2, by a different mechanism, but the end result will be shock, with regional or systemic ischemia and end-organ injury.33,35,52,78–80 Because many physiological threats can initiate the low systemic perfusion and high SVR feedback loop, early recognition, evaluation, and intervention are important.24 Careful routine medical assessment is needed, with special attention to hydration, nutrition, and identification of signs of infection. Specific laboratory evaluation of hemoglobin concentration, electrolyte balance, and concentration of brain natriuretic peptide, as well as echocardiography, is also important and should be performed judiciously.81 The hemoglobin is typically maintained in the 13 to 15 g/dL range, although no trials of transfusion strategy exist in this patient population.47,80,82 For newborns with HLHS, the reported incidence of interstage (ie, between discharge after stage 1 Norwood and admission for superior CPA) mortality is often as high as the hospital mortality after stage 1 Norwood palliation, particularly if the infant was palliated with an MBTS. (See Home Monitoring in the section on Location-Specific Arrest Prevention and Response Measures.)

Unique Challenges in CPR

Data from the Society of Thoracic Surgeons Congenital Heart Surgery Database (STS-CHSD) from 2007 through 2012 document a 12.7% incidence (350 of 2757) of cardiac arrest among patients undergoing stage 1 Norwood palliation.83 Once the patient with shunted single-ventricle physiology develops cardiac arrest, it will be challenging to restore spontaneous circulation. In fact, in the STS-CHSD registry, 62.3% of patients who developed postoperative cardiac arrest after stage 1 Norwood palliation died compared with a mortality rate of 12.5% among those patients who did not develop postoperative cardiac arrest.83

It is difficult to obtain effective PBF during resuscitation because PBF is shunt dependent and will likely be affected by the relationship between PVR and either the aortic relaxation (diastolic) pressure (for MBTS) or the SVR (for MBTS and the RVPAS). During CPR in patients with normal cardiac anatomy, compressions generate only ≈10% to 30% of normal blood flow to the heart and 30% to 40% of normal blood flow to the brain.6 In patients with single-ventricle shunted physiology, systemic output (QS) is even lower, because there is loss of potential SBF to the lungs given the parallel circulation (Table 2). As a result, SBF often has low oxygen content and in the presence of reduced coronary perfusion will result in persistent and likely severe coronary ischemia. Prolonged CPR in the shunt-dependent single-ventricle patient will be associated with hypoxemia, systemic ischemia, and significant end-organ injury, particularly neurological injury.

When cardiac arrest develops, providers should begin conventional high-quality CPR. The AHA recommends that compressions be performed on the sternum just below the intermammary line in infants and on the lower half of the sternum in children.84 However, data regarding the need to modify this position in infants and children with single ventricle (or any congenital heart defect) are limited. A recent Korean single-center case series of 185 patients (median age 0.5–12.5 years) with single ventricle (73 before creation of the superior CPA, 61 after superior CPA, and 51 after Fontan procedure) found that in all patients, the largest cross-sectional area of the systemic ventricle (assessed by computed tomography [CT] scan) was under the lower quarter (ie, bottom 25%) of the sternum.85 More data such as these are needed. If the patient with single-ventricle arrests in the ICU and has indwelling monitor-
ing catheters, it is reasonable for providers to monitor arterial and central venous pressures and pressure tracings and modify compression technique as needed to optimize blood pressure and coronary perfusion pressure generated during compressions.86

Because of the limitations to conventional CPR described above, it is important to consider additional management within the first minutes of the resuscitation. These include urgent opening of the sternum (in the immediate postoperative period), treatment of arrhythmias or use of external pacing if indicated, treatment of possible shunt thrombosis, and early activation of the ECLS team, if available in the institution. Longer-duration in-hospital CPR efforts that include ECPR can be successful, but prolonged out-of-hospital resuscitation efforts are generally unsuccessful.14,87

Gaps in Knowledge
Management of newborns with single-ventricle physiology after stage 1 Norwood palliation or shunt placement is based on reported institutional practices. Data from the Single Ventricle Reconstruction Trial,63 national database extractions,88,89 and clinical program surveys about single-ventricle care90 demonstrate considerable variation in practice among centers. Of concern, few modifiable risk factors related to the perioperative critical care management of patients with single-ventricle physiology that could contribute to cardiac arrest have been identified. To improve outcomes, it is essential to reduce practice variability through benchmarking and sharing of physiological, management, and outcome data. Additional studies are needed to determine whether modifications in chest compression technique are needed in patients with single ventricles.

Recommendations: Single-Ventricle Palliation Perioperative Management

1. In the mechanically ventilated preoperative neonate with pulmonary overcirculation and symptomatic low systemic cardiac output and Do2inspired carbon dioxide can be beneficial to provide a short-term increase in cardiac output (Class IIa; Level of Evidence C). Hyperventilation and hyperoxygenation may be potentially harmful in this circumstance (Class III: Harm; Level of Evidence C).

2. Direct (SVC catheter) or indirect (NIRS) monitoring can be beneficial to follow AVo2D and to direct management in the critically ill neonate after stage 1 Norwood palliation or shunt placement (Class IIa; Level of Evidence B).

3. In the patient with an appropriately restrictive shunt, manipulation of PVR may have little effect, whereas lowering SVR and use of oxygen as needed can be useful to increase systemic Do2 (Class IIa; Level of Evidence C).

4. In the situation of known or suspected shunt obstruction, it is reasonable to administer oxygen, vasoactive agents to increase shunt perfusion pressure, and heparin (50–100 U/kg bolus) while preparing for catheter-based or surgical intervention (Class IIa; Level of Evidence C).

Superior CPA and Fontan
In the prearrest phase with low cardiac output or respiratory failure, strategies to improve venous return to the superior CPA will increase PBF. In particular, strategies to increase relative cerebral blood flow and minimize intrathoracic pressure have been successful. Although spontaneous ventilation is preferable to augment PBF and stroke volume in the superior CPA or Fontan physiology, judicious mechanical ventilation is usually well tolerated in circumstances of respiratory failure or low cardiac output. Positive-pressure ventilation has the benefit of reducing afterload and wall stress to the systemic ventricle for the patient with significant myocardial dysfunction or atrioventricular valve insufficiency; however, it does so at the expense of compromising PBF and ventricular preload. Optimum titration of inotropic support, afterload reduction, and positive-pressure ventilation are challenging and must be tailored to each individual patient. After the superior CPA and Fontan operations, the relationship between mean CPA and Do2 is usually well tolerated in circumstances of respiratory failure or low cardiac output. Positive-pressure ventilation is increased transpulmonary gradient can result from reactive pulmonary vasoconstriction or fixed pulmonary vascular disease, pulmonary artery hypoplasia or stenosis, or pulmonary venous obstruction. High CPA and LA pressure are associated with ventricular dysfunction, hemodynamically significant atrioventricular valve regurgitation, systemic atrioventricular valve stenosis, ventricular outflow tract obstruction, or arrhythmia or loss of atrioventricular synchrony. The transpulmonary pressure gradient (the difference between the mean PA pressure [CPA or Fontan pressure] and the mean LA pressure) is an important determinant of PBF and systemic ventricular preload. Appropriate strategies of mechanical ventilation are critical, because PBF occurs predominantly during exhalation, when the intrathoracic pressure is at its lowest. It is important to rule out anatomic factors that limit effective PBF (deoxygenated blood through into the pulmonary capillary bed), including stenosis of the pulmonary arteries, large venous collateral vessels from the SVC to the pulmonary veins or to the systemic venous return via the IVC.
another.93 Carbon dioxide plays a significant role in the single-ventricle patient can lead to a low cardiac output state.

Management of Ventilation
Physiological studies argue against use of hyperventilation in single-ventricle patients with superior CPA, and complementary studies support the use of maintaining systemic oxygenation and D do2, without significant monitoring of systemic oxygen delivery. The greatest improvement in systemic oxygenation occurs with induction of hypercapnic ventilation. Stage 1: After surgical palliation of parallel circulation with relief of arch obstruction and limitation of pulmonary blood flow with a systemic-to–pulmonary artery shunt. Hypercapnia can improve cerebral more than systemic oxygen delivery. Stage 2: After superior cavopulmonary anastomosis. The cerebral and pulmonary circulations are in series, and hypercapnia can improve systemic arterial oxygen saturation and systemic oxygen delivery by increasing cerebral blood flow, SVC flow, and pulmonary blood flow. This can be a useful strategy in patients with superior CPA who have hypoxemia resulting from limited PBF early in the postoperative period.

Alternatively, hyperventilation lowers arterial partial pressure of carbon dioxide, thereby increasing cerebral vascular resistance, hypoventilation-induced hypercapnia increases cerebral blood flow, SVC blood flow, and pulmonary blood flow. This can be a useful clinical strategy in patients with superior CPA who have hypoxemia resulting from limited PBF early in the postoperative period.

or azygous systems (only in the superior CPA), pulmon- ary arteriovenous malformations, and in the case of the fenestrated Fontan operation, a large right-to-left shunt across the fenestration.

Table 3. Effect of Respiratory Manipulations on Circulatory Parameters at Different Stages of Palliation of Children With Univentricular Physiology95,98-101,90

<table>
<thead>
<tr>
<th>Stage and Respiratory Strategy (Alveolar Gas)</th>
<th>Sao2</th>
<th>Svo2</th>
<th>Qp/Qs</th>
<th>TPG</th>
<th>AVo2,D</th>
<th>Vo2</th>
<th>Lactate</th>
<th>CBF</th>
<th>rSo2,C</th>
<th>rSo2,S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Hypocapnic</td>
<td></td>
</tr>
<tr>
<td>Hypoxia</td>
<td></td>
</tr>
<tr>
<td>Hypocapnic156,10</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
<td></td>
</tr>
<tr>
<td>Hypoxic156,10</td>
<td>↓</td>
<td>↓</td>
<td>↓</td>
<td></td>
<td>←</td>
<td>←</td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>1 Hypocapnic157</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypoxia</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypocapnic156,10</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypoxic</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypocapnic94</td>
<td>↓</td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td>←</td>
<td>↑</td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypoxic</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
<td>←</td>
<td>←</td>
<td>↑</td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypocapnic156,10</td>
<td>←</td>
<td>←</td>
<td>←</td>
<td></td>
<td>←</td>
<td>←</td>
<td>↑</td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
<tr>
<td>Hypoxic</td>
<td>↑</td>
<td>↑</td>
<td>←</td>
<td></td>
<td>←</td>
<td>←</td>
<td>↑</td>
<td></td>
<td>←</td>
<td>←</td>
</tr>
</tbody>
</table>

Measured parameters in multiple studies are shown. Stage 0: Uncorrected/unpalliated ductal-dependent parallel pulmonary and systemic circulations. Maintenance of ductal patency is necessary for systemic perfusion, and prostaglandin E1 is indicated. No human experimental data exist for measures such as hypocapnic or hypercapnic alveolar gas strategies that tend to reduce pulmonary vascular resistance, and such strategies should generally be avoided without significant monitoring of systemic oxygen delivery. The greatest improvement in systemic oxygenation occurs with induction of hypercapnic ventilation. Stage 1: After surgical palliation of parallel circulation with relief of arch obstruction and limitation of pulmonary blood flow with a systemic-to–pulmonary artery shunt. Hypercapnia can improve cerebral more than systemic oxygen delivery. Stage 2: After superior cavopulmonary anastomosis. The cerebral and pulmonary circulations are in series, and hypercapnia can improve systemic arterial oxygen saturation and systemic oxygen delivery by increasing cerebral blood flow, SVC blood flow, and pulmonary blood flow. This can be a useful strategy in patients with superior CPA who have hypoxemia resulting from limited PBF early in the postoperative period.

Hyperventilation causes a decrease in cerebral blood flow velocity and in cerebral oxygenation.58 Therefore, normoventilation or mild hyperventilation preserves cerebral oxygenation in patients with superior CPA. Although not studied in patients with superior CPA, it might be beneficial to use a mechanical ventilation strategy of higher tidal volume and lower ventilation pressure.
rate while aiming for the lowest possible mean airway pressure.

In patients with Fontan physiology, negative-pressure ventilation has been shown to improve stroke volume and cardiac output by augmenting PBF without an increase in heart rate. However, the use of negative-pressure ventilation might not be practical for many centers. Current research involving the combination of intermittent positive-pressure ventilation in conjunction with a device that generates a negative intrathoracic pressure during the expiratory phase could allow for augmentation of PBF, stroke volume, and cardiac output in these populations.

In a small case series after superior CPA or tetralogy of Fallot (TOF) repair, airway pressure release ventilation was shown to increase PBF at a comparable mean airway pressure but did not improve Do₂.

Unique Challenges in CPR
Survival from cardiac arrest in a patient with superior CPA or Fontan physiology is low. In the STS-CHSD registry, 0.9% of patients (17 of 1923) undergoing a Fontan correction developed postoperative cardiac arrest, and 41.2% of these patients died. To optimize survival, it is important to recognize the physiological differences between patients with superior CPA and those with a Fontan, as well as the special considerations each requires during CPR (Table 2). As noted above, during CPR in patients with normal cardiac anatomy, cardiac output is thought to be approximately one-third that of normal.

In patients with either a superior CPA or a Fontan, chest compressions create SBF but minimal PBF. This reduction in PBF limits oxygenation and preload to the systemic ventricle, thereby further reducing cardiac output.

Cardiac output in patients with superior CPA can be further limited in the presence of atrioventricular or semilunar valve regurgitation. An additional important consideration is the elevation in SVC and cerebral venous pressure that occurs during chest compressions in patients with a superior CPA, which will limit cerebral blood flow and increase the risk for neurological injury.

In the patient with a bidirectional Glenn/hemi-Fontan, chest recoil produces flow through the superior CPA and lungs, as well as from the IVC into the systemic venous atrium, providing important preload to the single ventricle for the next compression. In contrast, chest recoil in Fontan physiology results in filling of the total cavopulmonary connection from the SVC and IVC.

Gaps in Knowledge
Publications describing inotropic and ventilatory management of the patient with superior CPA or Fontan physiology with respiratory or cardiac failure are limited to case reports and case series. Patient heterogeneity relative to hemodynamic and cardiorespiratory interactions challenges the practicality of prospective trials.

Recommendations: Superior CPA and Fontan

1. For patients with a superior CPA or Fontan physiology, ventilatory strategies such as spontaneous or negative-pressure ventilation can be useful to increase cardiac output (Class IIa; Level of Evidence C).

2. For patients with a superior CPA and severe hypoxemia in a prearrest state, ventilatory strategies that target a mild respiratory acidosis and a minimum mean airway pressure without atelectasis can be useful to increase cerebral and systemic arterial oxygenation (Class IIa; Level of Evidence B).

3. If the patient with a superior CPA develops cardiac arrest, the survival is poor, and risk for end-organ injury is increased. As a result, it is important for providers to recognize and intervene when prearrest low cardiac output and impaired Do₂ develop (Class IIa; Level of Evidence C).

Right-Sided Heart Disease

Patients undergoing reconstruction of the RV outflow tract (eg, TOF, double-outlet RV TOF type, truncus arteriosus) are at risk for both systolic and diastolic RV dysfunction. The risk is determined by the age of the patient, the degree of volume or pressure overload imposed on the RV, the duration the RV has been exposed to abnormal loading conditions, and residual or additional postoperative lesions. The following physiological and anatomic factors are associated with an increased risk of postoperative RV systolic or diastolic dysfunction: (1) preoperative RV hypertrophy with an RV that functions at systemic (or suprasystemic) pressures and decompresses through a ventricular septal defect (VSD); (2) an operative procedure that includes VSD closure and RV outflow tract reconstruction; (3) postoperative pulmonary valve insufficiency with acute RV volume loading (particularly if the RV is hypertrophied); and (4) RV dysfunction from resection of muscular obstruction (especially if the moderator band is damaged or excised) or ventriculotomy with or without insertion of an RV-to–pulmonary artery conduit.

These acute changes in anatomy and physiology result in a heart that is predisposed to various degrees of RV systolic and diastolic dysfunction.

The RV with systolic and diastolic dysfunction is exquisitely dependent on sinus rhythm for the atrial contribution to ventricular filling to maintain cardiac output. Such an RV is intolerant of positive-pressure ventilation with high mean airway pressures. Residual
Postoperative restrictive RV physiology is characterized by Doppler demonstration of persistent antegrade diastolic blood flow into the pulmonary artery in late diastole at the time of atrial contraction. After TOF repair, ventricular diastolic dysfunction is thought to be associated with intraoperative myocardial injury and postoperative oxidant stress. In the most severe cases, the RV acts as a passive conduit between the right atrium and pulmonary artery. There is often an elevated RV end-diastolic pressure and RV hypertrophy. Diastolic RV dysfunction is characterized by impaired relaxation and filling.

A stiff, poorly compliant, and hypertrophied RV is associated with an elevated ventricular end-diastolic pressure and systemic venous hypertension. Reduced RV preload reduces RV stroke volume and therefore LV preload and cardiac output. RV and LV interdependence and the effect on septal position affects LV compliance and function, further contributing to impaired stroke volume. Such a clinical scenario might be particularly evident after neonatal and infant RV outflow reconstruction and ventriculotomy, such as after truncus arteriosus or TOF repair. Hemodynamically significant residual defects, including residual VSD, outflow tract obstruction, or dysrhythmias will exacerbate RV failure and the low cardiac output state.

Atrial Shunt
In the presence of right-sided heart diastolic dysfunction or RV systolic failure, an atrial septal defect that allows right-to-left shunting can be helpful to preserve LV preload and decrease RV wall stress and systemic venous hypertension. This has been studied primarily in patients with idiopathic PAH. Simple calculations demonstrate that preservation of LV preload with shunted systemic venous blood will improve systemic Do2, even if there is systemic arterial desaturation. However, it is difficult to judge the size of the atrial communication, and on occasion, severe hypoxemia requires reoperation to close or reduce the size of the atrial defect.

Tissue Edema and Tamponade
During the postoperative period after reconstruction of the RV outflow tract, fluid is progressively given to maintain RV preload, and thereby LV preload, to prevent systemic hypotension. Over time, the increase in blood pressure and mixed SvO2 in response to fluid administration diminishes, the patient becomes edematous, and further fluid administration is counterproductive. The capillary leak and third-space accumulation of fluid can reflect direct endothelial injury as a result of the inflammatory response to bypass, but after RV outflow reconstruction, it can also be caused by elevated RV end-diastolic pressure and CVP. Both capillary leak and an elevated CVP result in fluid collection in the peritoneal and pleural cavities and tissue edema despite relative intravascular volume depletion and inadequate RV preload. This phase of capillary leak typically resolves over the subsequent 1 to 2 postoperative days; however, it is extremely important to rule out residual anatomic defects.

The RV is also susceptible to compression from tissue edema in the mediastinum, resulting in so-called tissue tamponade, which further restricts filling. If there is risk of tamponade physiology, it can be useful to leave the...
sternum open or reopen the sternum if signs or symptoms of tamponade develop during the early postoperative period.129–133

Fluid accumulation in the lungs or pleural spaces will result in higher ventilator pressures further impairing RV filling and cardiac output. Pleural fluid evacuation is usually helpful. Abdominal compression from ascites impairs IVC flow. Prophylactic placement prior to surgery or early consideration of placement after surgery of a peritoneal drain can be helpful.134–136

Mechanical Ventilation and Cardiopulmonary Interactions
Mechanical ventilation can have a significant impact on RV afterload and the amount of pulmonary regurgitation.137 Both hypoinflation and hyperinflation of the lung will increase afterload of the RV and can reduce preload to the LV, with a resultant fall in cardiac output. There is also the potential for worsening pulmonary regurgitation if PVR increases. In addition, RV ischemia can develop from increased wall stress and increased RV myocardial oxygen demand. There is evidence that positive-pressure ventilation is harmful and negative-pressure ventilation is beneficial in right-sided heart diastolic dysfunction. Spontaneous ventilation and negative-pressure ventilation improve cardiac output and renal function.99,138,139 There is reported benefit to airway pressure release ventilation.102 Positive-pressure ventilation with the lowest mean airway pressure and early postoperative extubation can be advantageous, although in a patient with an LCOS, this must be balanced against the potential detrimental effects of increased work of breathing and loss of airway control.

Cardiac Rhythm and Pacing
Right atrial contraction associated with sinus rhythm can make an important contribution to RV filling and cardiac output in patients with right-sided heart dysfunction.109,110 Atrial arrhythmias, especially if associated with atrioventricular dissociation (eg, junctional ectopic tachycardia [JET]) can be poorly tolerated. These arrhythmias must be diagnosed promptly, and if hemodynamically significant, treated with measures including mild hypothermia, minimization of catecholamine use, minimization of O₂ demand, administration of amiodarone or procainamide, and cardiac pacing.140,141 After reconstruction of the RV outflow tract, right bundle-branch block and ventricular dyssynchrony are common and can be exacerbated by RV pacing. Biventricular pacing can improve cardiac output in children with postoperative right- or left-sided heart dysfunction.142–144

Pharmacological Management of Right-Sided Heart Dysfunction
When a patient develops postoperative right-sided heart dysfunction, inotropic and vasoactive agents must be carefully selected and titrated.120 Coronary blood flow to the RV occurs during both systole and diastole in the normal heart but can be reduced when the RV is hypertrophied and end-diastolic pressure is elevated. As a result, when oxygen demand is increased, such as with tachycardia and elevated wall stress, the RV is at risk for ischemia.145 Low-dose epinephrine infusion is an adjunctive therapy for systolic dysfunction of the RV; however, catecholamines can cause tachycardia and increase oxygen demand and wall stress, thereby worsening RV diastolic dysfunction.120 Systemic vasocostricators, especially vasopressin146,147 and norepinephrine,146,147 can be useful to support mean arterial pressure, reducing the need for fluid administration; they will also maintain coronary perfusion pressure and potentially improve ventricular interactions. If there is pulmonary vasocostriction, iNO can be a useful therapy in RV failure.148,149

Unique Challenges in CPR
Cardiac output during CPR can be very limited in patients who have undergone reconstruction of the RV outflow tract. The recommendations for high-quality CPR should be followed; however, filling of the RV during chest recoil can be limited if the RV has restrictive physiology with diastolic dysfunction. Additional fluid should be administered to augment intravascular volume. Pulmonary regurgitation can be worsened by chest compressions, resulting in decreased PBF, LV preload, and cardiac output. Coronary perfusion and blood flow to a hypertrophied RV can be limited during chest compressions, and it is important to minimize the time to first administration of epinephrine. The risk for hemodynamically significant supraventricular arrhythmia (ie, supraventricular tachycardia [SVT] or JET) is high, and these arrhythmias should be viewed as prearrest states and must be identified and treated promptly. Chest compressions can compress and obstruct the reconstructed RV outflow tract. Thus, if CPR is needed in the immediate postoperative period, it may be necessary to open the chest as quickly as possible to enable open-chest cardiac massage.

Gaps in Knowledge
Evidence to support management of the patient with right-sided hemodynamic compromise after congenital heart surgery is limited to case reports and a few case series; more research is needed.

Recommendations: Right-Sided Heart Disease
1. In patients with postoperative RV systolic and/or diastolic dysfunction, an atrial shunt can be helpful to increase systemic cardiac output and systemic Do₂, despite systemic...
Pulmonary Arterial Hypertension

PAH is a major cause of morbidity and mortality in children with congenital and acquired heart disease. Much of the data regarding the incidence of PAH after pediatric cardiothoracic surgery and the risk of, therapies for, and outcomes after pulmonary hypertensive crises are from single-center case series. The disease is difficult to study because of the heterogeneity of the pediatric population and the small number of patients seen at each center. The Pediatric Pulmonary Hypertension Network Informatics Registry (ClinicalTrials.gov identifier No. NCT02249923) has been established to better understand disease processes and facilitate treatment. In the interim, efforts to standardize definitions and treatment led to the 2015 publication of the first Pediatric Pulmonary Hypertension Guidelines from the AHA and the American Thoracic Society. Recommendations contained herein are consistent with those guidelines.

Pulmonary hypertension occurs in 2% to 5% of pediatric patients after cardiac surgery, and 0.7% to 5% of all cardiovascular surgical patients experience postoperative pulmonary hypertensive crises, with the highest reported risk among patients with atrioventricular septal defects, truncus arteriosus, TAPVC, transposition of the great arteries (TGA), and VSD. In a case series from Sweden, the incidence of pulmonary hypertensive crises was higher after atrioventricular septal defect repair (14%) and in patients with trisomy 21 (10%). In other case series, up to 20% of high-risk pediatric cardiac surgical patients had postoperative pulmonary hypertensive crises. Postoperative pulmonary hypertension prolongs ICU stay and time to extubation, and the in-hospital mortality rate among patients who have pulmonary hypertensive crises might be as high as 20%. Even when patients with pulmonary hypertension do not experience a postoperative pulmonary hypertensive crisis, they still have a higher mortality risk during the first 12 months after surgery, accounting for up to 8% of late deaths after cardiac surgery.

Pulmonary Hypertensive Crises

Pulmonary hypertensive crises are acute and potentially lethal increases in PAP and PVR that cause acute right-sided heart failure accompanied by tricuspid regurgitation, systemic hypotension, myocardial ischemia, and even cardiac arrest. They can be triggered by a variety of stimuli, including pain, anxiety, tracheal suctioning, hypoxia, and acidosis. Pulmonary hypertensive crises have been described and studied most frequently when they occur after cardiac surgery, but they can also accompany modulation or withdrawal of pulmonary hypertension–specific therapy. Pulmonary hypertensive crises can be precipitated outside of the perioperative period by intercurrent illness, lung injury, or infection or by noncardiac interventions. If pulmonary hypertensive crises are incompletely treated initially, they recur, and subsequent crises can be more severe and prolonged.

Histological examination of the lung vasculature in patients who experience fatal pulmonary hypertensive crises usually reveals reversible changes. There is medial hypertrophy with abnormal peripheral extension of muscle into normally nonmuscularized arteries. The histological examination of lung tissue obtained from patients who have had pulmonary hypertensive crises after repair of TAPVC can show not only the vascular changes described above but also lymphangiectasia.

Clinical and hemodynamic findings associated with postoperative pulmonary hypertensive crises include an abrupt increase in PAP (ratio of PAP to systemic artery pressure >0.75), followed by increased right atrial and RV end-diastolic pressures and CVP, decreased systemic and mixed SVO₂, decreased systemic arterial pressure (by >20%), and decreased cardiac output. Bronchoconstriction or increased airway resistance can also be noted. Intraoperatively placed pulmonary artery catheters can be useful to confirm diagnosis and evaluate management after cardiac surgery. There is great variability in the use of these catheters. It is difficult to predict which patients at risk for pulmonary hypertension and pulmonary hypertensive crises will benefit from a pulmonary artery catheter, which alters the risk-benefit ratio associated with the use of these catheters.

Management Plan for Patients at Risk for Pulmonary Hypertensive Crisis

Patients with PAH require a comprehensive plan of care that includes meticulous care to prevent episodes of pulmonary hypertensive crises. This plan must also include a plan for postoperative hemodynamic monitoring and the recommended sequence of interventions to be initiated in response to development of pulmonary hypertensive crises.

Palliative right-sided heart and pulmonary artery decompression procedures (such as an atrial septostomy and placement of Potts shunt) can significantly reduce the risk of pulmonary hypertensive crises and prolong survival in idiopathic PAH. It is important to optimize the size of the atrial shunt to avoid a large right-to-left shunt and profound hypoxemia and cyanosis. Atrial septostomy, performed at a center with experience in treatment of pulmonary hypertension, is recommended for patients with RV failure, recurrent...
syncope, or pulmonary hypertensive crises that persist despite optimized medical management.

Treatment of pulmonary hypertension and prevention of pulmonary hypertensive crises include provision of adequate analgesia, sedation, and the use of muscle relaxants; avoidance of hypoxia and acidosis; administration of inhaled pulmonary vasodilators; and use of oral and systemic vasodilators. Pulmonary vasodilators must be weaned carefully; if the child develops a pulmonary hypertensive crisis during weaning, administration of the previously successful dose of the drug should be resumed. During a crisis, administration of systemic vasoconstrictors can also be considered to maintain coronary perfusion of the RV.

Adequate Analgesia, Sedation, and Use of Muscle Relaxants

The association of pulmonary hypertensive crises with sympathetic stimulation has been documented.158,160 Neonates undergoing cardiac surgery demonstrate high levels of sympathetic stress hormones that are attenuated with administration of high-dose fentanyl analgesia.186,187 For pediatric cardiovascular surgical patients who are at risk for pulmonary hypertensive crises, provision of adequate opiates, sedatives, and muscle relaxants is recommended.150 In general, continuous infusion of the synthetic opioid fentanyl with the use of muscle relaxants is beneficial for early postoperative care of high-risk patients. It can be beneficial to supplement baseline analgesic drugs with additional doses before high-risk procedures such as suctioning of the endotracheal tube.150

Avoidance of Hypoxia and Acidosis

There is considerable evidence that hypoxia and acidosis are each powerful pulmonary vasoconstrictors.188–191 As a result, the care of the child with pulmonary hypertension who is at risk for pulmonary hypertensive crises requires meticulous respiratory management and monitoring to avoid and promptly treat hypoxia and acidosis.

Alkalosis is as potent a vasodilator as iNO. During pulmonary hypertensive crises, oxygen administration and induction of alkalosis through hyperventilation or alkal administration are recommended while pulmonary-specific vasodilators are administered.150 However, alkalosis can have detrimental sequelae, whether it is induced by hyperventilation or by alkal administration.188 Hyperventilation can induce lung injury, and the response to sodium bicarbonate administration can be only transient. In addition, sodium bicarbonate can decrease cardiac output and cerebral blood flow and increase CVP and SVR.150

Inhaled Pulmonary Vasodilators

iNO163,190,192–202 and prostacyclin (PGI)194,196,203 are currently available inhaled pulmonary vasodilators that can be used to prevent and treat pulmonary hypertensive crises in patients with pulmonary hypertension. In one prospective, randomized controlled trial of 124 children after cardiac surgery for large VSDs or atrioventricular septal defects, iNO treatment reduced the frequency of pulmonary hypertensive crises and shortened the time to extubation.164 In a retrospective review from 1984 to 1994 of 294 patients with atrioventricular septal defect repair and severe postoperative pulmonary hypertension, iNO administration was associated with reduced mortality.204 Inhaled PGI1 has been shown to transiently produce pulmonary vasodilation and improve oxygenation, but the alkalinity of the drug can irritate airways, and precise dosing can be complicated by drug loss in the nebulization circuit.150,205 Inhaled iNO or PGI1 should be used in the initial therapy for pulmonary hypertensive crises and right-sided heart failure.

To minimize the side effects from intravenous vasodilator drugs, there has been great interest in delivering drugs such as milrinone, nitroglycerin, and PGI1 through inhalation.153,196,206 In one randomized controlled trial of 35 children with cyanotic heart disease and pulmonary hypertension, both inhaled milrinone and iNO produced a fall in systolic pressure, diastolic pressure, and mean PAPs and PVR.206 These inhaled drugs could offer an alternative to intravenous routes of administration, but experience with them is limited.

Systemic Vasodilators

The intravenous vasodilators PGI1 and nifedipine have been used to decrease PVR, predominantly during acute vasoreactivity testing with continuous systemic and PAP monitoring.207–209 However, there is no intravenous vasodilator that has a discrete and specific effect on the pulmonary circulation, so the use of these agents must be balanced against the potential risk of complications, many of which result from the systemic arterial effects. In adults, a fall in SVR and hypotension, particularly in patients with idiopathic pulmonary hypertension and Eisenmenger syndrome,162,181,210 can contribute to an increased right-to-left shunt, progressive hypoxemia, and even cardiac arrest. Such a fall in SVR might occur in children with dehydration or those receiving procedural sedation. In children and adults, worsening hypoxemia can also result from the inhibition of hypoxic pulmonary vasoconstriction with an increase in intrapulmonary shunting.211,212

The intravenous vasodilators recommended for use in children for the treatment of PAH include drugs that have a predominant effect on the β-adrenergic receptors (eg, isoproterenol), phosphodiesterase inhibitors (eg, milrinone [type 3 inhibition] and sildenafil [type 5 inhibition]), eicosanoids (eg, prostaglandin E1 [PGE1] and PGI1 and the PGI1 analogue treprostinil [remodulin]), and other drugs that increase intracellular cyclic guanosine monophosphate (eg, nitroglycerin).150 Intravenous sildenafil infusions can decrease time to extuba-
tion and length of ICU stay156 and can be effective in children with decreased gut perfusion or ischemia with poor enteral drug absorption.213 However, the effect of intravenous sildenafil during cardiac arrest related to pulmonary hypertension is unknown. For further information on the use of systemic vasodilators, the reader is referred to the 2015 guidelines on pediatric pulmonary hypertension published by the AHA and the American Thoracic Society.150

Oral Vasodilators

Oral vasodilator drugs administered to pediatric patients with pulmonary hypertension include the phosphodiesterase type 5 inhibitor (eg, sildenafil)150,214,215 and an endothelin receptor antagonist150 (eg, bosentan). In pediatric studies including children with CHD, sildenafil has been shown to improve peak oxygen consumption and functional class and reduce mean PAP and PVR. Sildenafil has been used effectively during withdrawal of iNO and in children with postoperative PAH,216 but its pulmonary vasodilator effects must be balanced against the consequences of increased intrapulmonary shunt. Sildenafil can be administered either as a 1-time dose to prevent rebound or repeatedly every 6 to 8 hours to treat ongoing PAH. In a multicenter, double-blind, randomized, placebo-controlled trial of bosentan versus placebo in 54 patients with class III Eisenmenger syndrome, bosentan was associated with a significant fall in PVR index and mean PAP without a fall in SVR.217

Calcium channel blockers (amlodipine, diltiazem, and nifedipine) can be used to treat the relatively stable patient with pediatric arterial hypertension; however, these drugs can cause a decrease in cardiac output and a significant drop in systolic blood pressure.150 As a result, calcium channel blockers are recommended only for those patients who are noted to have a reactive pulmonary vascular bed (as assessed by acute vasoreactivity testing) and who are older than 1 year of age.180

Rebound Pulmonary Hypertension

Rebound pulmonary hypertension occurs in approximately one-third of patients whose iNO is being weaned. Rebound pulmonary hypertension can be managed effectively with the use of intravenous sildenafil or (when the patient is stable) oral sildenafil170,171. Intravenous sildenafil can cause systemic hypotension.150

Systemic Vasodilators

During pulmonary hypertensive crises, the RV fails, and the increased RV afterload produces increased myocardial oxygen demand at the same time that the coronary perfusion pressure and coronary blood flow are decreased. As a result, the RV can become ischemic, worsening right-sided heart failure. The elevated PVR and RV failure lead to a fall in PBF and left-sided heart filling, with a resultant fall in cardiac output. Volume replacement is needed. In addition, inotropic agents can be administered to improve RV function, and vasopressors can be administered to treat systemic hypotension and improve coronary artery perfusion pressure. There are animal data that suggest that vasopressin can increase SVR without causing a similar increase in PVR218; however, in vivo studies of the pulmonary vascular response to vasopressin in adults have yielded inconsistent results.219 A prospective pilot study of phenylephrine, arginine vasopressin, and epinephrine in pediatric patients with pulmonary hypertension showed an increase in aortic pressure with all drugs, although only vasopressin resulted in a consistent decrease in the ratio of PVR to SVR.220 Mechanical cardiopulmonary support should be considered in cases of right-sided heart failure refractory to inotropes and vasconstrictors (see Mechanical Support section).

Unique Challenges in CPR

When adult patients with PAH develop cardiac arrest, conventional resuscitation with CPR and medications is rarely effective, with a 6\% reported survival rate.221 Similar to adults, children with PAH can develop sudden cardiac arrest.157,221–224 The cardiac arrest can be triggered by arrhythmia, pulmonary hemorrhage, left main coronary compression by the pulmonary artery, pulmonary artery dissection or embolus, spontaneous PAH crisis, or dose reduction or withdrawal of a pulmonary artery vasodilator. The ultimate cause of the cardiac arrest is usually acute RV decompensation in a patient with little reserve.

Once cardiac arrest develops in a child with PAH, chest compressions and resuscitation drugs might be ineffective in generating PBF, LV filling, and cardiac output. It is extremely important to search for and treat possible reversible causes of increased PVR, including inadvertent interruption in targeted pulmonary hypertension drugs, hypercarbia, hypoxia, arrhythmia, cardiac tamponade, or drug toxicity. There is no evidence that alkali administration improves outcome, and there is evidence that excessive ventilation during resuscitation is harmful222; positive-pressure ventilation will decrease systemic venous return, RV filling, and cardiac output generated during chest compressions.

If high-quality CPR remains ineffective despite provision of pulmonary hypertension–specific therapy, including pulmonary vasodilators, rapid consideration of ECLS might offer the best chance of survival, either as a bridge to heart/lung transplantation or to permit recovery from the inciting factor.223,225–227 Survival has been reported using conventional ECLS or ECLS with a pumpless lung assist device.228–231 Reports of cardiac arrest during cardiac catheterization of children with PAH suggest that use of specific pulmonary vasodilators can be beneficial when delivered with careful hemodynamic monitoring.175,176 Once cardiac arrest has occurred, outcomes can be improved
in the presence of an anatomic right-to-left shunt that permits LV preload to be maintained without PBF. We identified no studies reporting the outcome of CPR after cardiac arrest in children with Eisenmenger syndrome or after postoperative cardiac arrest in children with PAH.

Intravenously administered PGI₂ could have a role in resuscitation of children with PAH, but there is no evidence to support this. Abrupt cessation of pulmonary hypertension–targeted therapies can result in rebound pulmonary hypertension and cardiac arrest (see Rebound Pulmonary Hypertension section). Therefore, it is always prudent to determine whether impediment to drug delivery is the cause of hemodynamic deterioration, especially in patients receiving chronic infusions of PGI₂ or analogues. This requires rapid assessment and correction of problems with the central venous catheter, the subcutaneous site, or the drug-infusion system (including tubing and pump).

The poor outcome after cardiac arrest in patients with PAH reinforces the need for a preventative approach for high-risk patients (ie, those with established Eisenmenger syndrome, RV dysfunction, suprasystemic PAPs, and tricuspid and pulmonary valve regurgitation). Given the risk for cardiac arrest in these patients, admission to the ICU should be considered during any intercurrent illness or when the child is undergoing noncardiac or other procedures.

Gaps in Knowledge

Much of our understanding of the management of pulmonary hypertension has emerged from the adult population, with very limited pediatric data available. A data registry for pediatric patients with PAH will allow for critically needed clinical and translational research and quality improvement science that will better inform our clinical care for this high-risk population.

Recommendations: Pulmonary Arterial Hypertension

1. Atrial septostomy is recommended for patients with RV failure, recurrent syncope, or pulmonary hypertensive crises that persist despite optimized medical management but should ideally be performed in an experienced pulmonary hypertension center (Class I; Level of Evidence B).

2. For pediatric patients who are at high risk for pulmonary hypertensive crises, provision of adequate opiates, sedatives, and muscle relaxants is recommended to minimize risk of pulmonary hypertensive crises (Class I; Level of Evidence B).

3. The postoperative care of the child with pulmonary hypertension at high risk for pulmonary hypertensive crises requires careful respiratory management and monitoring to avoid hypoxia and acidosis (Class I; Level of Evidence B).

4. For the initial treatment of pulmonary hypertensive crises, oxygen administration and induction of alkalosis through hyperventilation or alkali administration can be useful while pulmonary-specific vasodilators are administered (Class IIa; Level of Evidence C).

5. iNO or PGI₂ should be used as the initial therapy to treat pulmonary hypertensive crises or acute right-sided heart failure secondary to increased PVR (Class I; Level of Evidence B).

6. Sildenafil should be prescribed to prevent rebound pulmonary hypertension in patients who are at risk for or demonstrate hemodynamic instability or symptomatic PAH during weaning or discontinuation of the iNO dose (Class I; Level of Evidence B).

7. In patients with pulmonary hypertensive crises, inotropic/vasopressor therapy should be used to avoid RV ischemia caused by systemic hypotension (Class I; Level of Evidence B).

8. ECLS can be useful in cases of refractory pulmonary hypertensive crises (Class IIa; Level of Evidence B).

9. It is reasonable to undertake early postoperative investigation to assess the operative result and identify additional or undetected lesions in patients with hemodynamically significant postoperative pulmonary hypertension (Class IIa; Level of Evidence C).

Left-Sided Heart Disease

Severe Mitral Valve Stenosis and Mitral Regurgitation

Severe Mitral Valve Stenosis

Severe mitral stenosis results in elevated LA pressure, pulmonary venous hypertension, and PAH. Although the PAH can be reversible after relief of the stenosis, the pulmonary vascular bed can be quite labile in the immediate postoperative period after mitral valve surgery. This reactivity is exacerbated by preoperative pulmonary edema and the inflammation caused by cardiopulmonary bypass, both of which affect pulmonary function and can further increase PVR. After relief of mitral stenosis, prophylactic administration of a pulmonary vasodilator such as iNO or a nonspecific vasodilator such as intravenous milrinone can be useful during the immediate postoperative period to minimize pulmonary vascular reactivity and pulmonary hypertensive crises.
The LV can also be less compliant postoperatively than preoperatively, and higher filling pressure might be required in the immediate postoperative period to maintain adequate cardiac output. Volume resuscitation should be given cautiously, with attempts to avoid a rapid elevation of LA pressure, acute development of pulmonary edema, and the precipitation of a pulmonary hypertensive crisis.

Mitral stenosis in isolation is uncommon. Children with mitral stenosis typically have multiple levels of left-sided outflow tract obstruction, with possible LV hypoplasia and endocardial fibroelastosis. As a result, in many instances after mitral valve repair, the LV end-diastolic pressure remains elevated, even in the absence of a mitral valve gradient. Mechanical ventilation strategies to improve pulmonary compliance and oxygenation, such as use of higher positive end-expiratory pressure, can reduce PVR and improve cardiac output, but excessive positive end-expiratory pressure can impede systemic and pulmonary venous return, resulting in a fall in cardiac output.

Severe Mitral Valve Regurgitation

Severe mitral regurgitation produces LA and LV volume overload, causing progressive LV dilation, dilation of the mitral valve annulus, and progressive LV dysfunction. Long-standing mitral regurgitation can result in LA hypertension and elevated PVR.

Postoperative LCOS can occur after mitral valvuloplasty or replacement, particularly in patients with preoperative ventricular dysfunction and higher LV end-systolic dimension. Other factors that can contribute to LCOS after mitral valvuloplasty or replacement include myocardial reperfusion injury after prolonged cross-clamp time, postoperative complications such as arrhythmias and complete heart block, coronary artery obstruction or injury during valve replacement, and increased pulmonary vascular reactivity. In a study of >100 children undergoing mitral valve repair or replacement predominantly for mitral regurgitation, the mortality rate was nearly 10%, and 10% required mechanical circulatory support in the immediate postoperative period.

In the immediate postoperative period after mitral valve repair or replacement, patients require close monitoring of cardiac output. If LA pressure is measured directly with an LA catheter, the catheter and tubing must be carefully maintained and scrutinized to avoid any air emboli. Afterload reduction with intravenous milrinone and inotropic support is typical for at least 24 hours after surgery, and the duration of intravenous afterload reduction should be extended in the setting of preoperative or persistent postoperative ventricular dysfunction. For patients with severe postoperative LV dysfunction after mitral valve repair or replacement, exudation can be deferred until the LV function improves and the LV is deemed able to tolerate the increase in afterload that will result from loss of positive-pressure ventilation.

If LCOS persists despite escalation of inotropic support, early initiation of ECLS should be considered. ECLS is currently used primarily as a bridge to recovery, but in rare cases it can be considered as a bridge to placement of a long-term LV assist device (LVAD). Mitral valve replacement with a prosthetic valve is a relative contraindication for LVAD placement and entails technical modifications.

Unique Challenges in CPR

In the presence of severe mitral stenosis or regurgitation, elevated LA pressure and PVR limit effective PBF and ultimately the systemic cardiac output generated by chest compressions. In severe mitral stenosis, cardiac output generated by chest compressions is further limited by restriction of flow of pulmonary venous return across the mitral valve and decreased filling of the LV. In severe mitral regurgitation, cardiac output generated by chest compressions is further limited by the regurgitant blood flow from the LV across the mitral valve. If high-quality CPR remains ineffective, early consideration of ECLS might offer the best chance of survival.

Critical Aortic Valve Stenosis and Severe Aortic Valve Regurgitation

Critical Aortic Valve Stenosis

Newborns with critical aortic stenosis have a fixed elevation in LV afterload and will present with either a hypertrophied or dilated LV with decreased contractility. If LV hypertrophy is inadequate, wall stress increases and LV ejection fraction falls. LV endocardial fibroelastosis can be present and suggests subendocardial ischemia. Additional anatomic features that can affect cardiac output include abnormalities in the mitral valve, subaortic stenosis, and in some cases aortic arch obstruction (eg, coarctation of the aorta). An elevated LV end-diastolic pressure can result in high LA pressure and pulmonary edema. In newborn infants with critical aortic stenosis, PGE1 infusion is required to keep the ductus arteriosus open, enabling a pulmonary-to-aortic shunt that will support systemic perfusion. In addition, these infants often benefit from inotropic support to maintain adequate cardiac output before intervention.

Percutaneous aortic balloon valvuloplasty is associated with low mortality and is the preferred approach in most centers. Surgical aortic valvotomy can be performed with similar results. Relief of aortic stenosis without significant aortic regurgitation can result in a dramatic improvement in contractility and cardiac output if LV function is preserved. However, both percutaneous and surgical interventions are associated with higher mortality in the presence of preexisting LV dysfunction. In newborns with critical aortic ste-
nosis, the presence of endocardial fibroelastosis is another risk factor for early mortality and poor long-term outcome.243

After percutaneous balloon valvuloplasty in the neonate, the PGE infusion is discontinued. Inotropic support or afterload reduction might be needed in the immediate postintervention period to support cardiac output. Serial echocardiography with Doppler color flow is used to assess the magnitude and direction of shunting through the ductus arteriosus, LV function, and the degree of aortic stenosis and regurgitation to determine the need for and duration of inotropic support (eg, epinephrine) or afterload reduction (eg, milrinone).247 If LV function is poor, LA hypertension can persist, which leads to pulmonary venous and arterial hypertension and further compromise of pulmonary function and cardiac output.

It can be difficult to assess the adequacy of left-sided heart structures in patients with critical aortic stenosis. If LCOS persists despite adequate relief of aortic stenosis, the LV or mitral valve could be structurally and functionally inadequate to support a biventricular circulation. In such patients, it is important to consider early conversion to a univentricular strategy; such a conversion can be beneficial if performed before the onset of irreversible end-organ dysfunction.243,244 When the neonate with critical aortic stenosis has LV failure, severe mitral regurgitation, and a restrictive atrial septum, a balloon aortic valvuloplasty or a surgical aortic valvotomy and hybrid procedure can be beneficial to reduce LA hypertension and increase PBF. This hybrid procedure could include a balloon atrial septostomy or surgical atrial septectomy, bilateral pulmonary artery banding, and maintenance of ductal patency with stenting or PGE infusion. These procedures convert the patient to a palliated single-ventricle physiology in the short term without precluding later conversion to a biventricular circulation.242,246

Severe Aortic Valve Regurgitation

Aortic regurgitation creates a volume load for the LV that is similar to that resulting from mitral regurgitation. The volume load causes progressive LV dilation, concentric and eccentric hypertrophy, remodeling, and eventually LV dysfunction. Development of acute severe aortic regurgitation (eg, after balloon valvuloplasty for congenital aortic stenosis or with bacterial endocarditis) is not well tolerated and can cause coronary insufficiency, myocardial ischemia, and rapid progression of LV dilation and dysfunction.

Chronic aortic regurgitation represents a condition of increased volume load and afterload. As the disease progresses, the preload reserve and LV function decline. The risk of postoperative dysfunction increases in the presence of preoperative symptoms, LV dysfunction, and increased LV volume, particularly LV end-systolic volume.247-250 Postoperative management principles are similar to those outlined in the section on Severe Mitral Valve Regurgitation and include the use of vasodilator agents such as milrinone to reduce afterload and improve cardiac output.

Unique Challenges in CPR

Resuscitation from cardiac arrest in the presence of significant aortic valve disease presents several challenges. In aortic stenosis, the stroke volume and cardiac output generated during chest compressions are reduced because flow across the aortic valve is obstructed. In addition, if the LV is hypertrophied and poorly compliant, limited LV filling will further compromise stroke volume and cardiac output. Chest compressions must generate sufficient aortic root pressure to support adequate coronary perfusion to the hypertrophied myocardium.

In aortic regurgitation, the stroke volume and cardiac output generated during chest compressions are limited by the regurgitant flow across the aortic valve back into the LV. As a result, coronary perfusion pressure and cardiac output can be compromised.

Total Anomalous Pulmonary Venous Connection

In TAPVC, both systemic and pulmonary venous blood return to the right atrium; this results in right atrial dilation and RV dilation and hypertrophy. The LA and the LV are usually adequate but small relative to the RV.

Obstruction to pulmonary venous return results in pulmonary venous congestion and interstitial edema, which impairs gas exchange and increases PVR and PAP. This in turn increases RV afterload, causing RV systolic dysfunction and worsening of RV compliance. Neonates with obstructed TAPVC can present in extremis immediately after birth with a combination of respiratory failure, pulmonary hypertension, and circulatory collapse; preoperative ECLS is occasionally indicated to support Do$_2$.251-253

Surgical repair for neonates with TAPVC and biventricular physiology can be accomplished with low mortality.254 In the postoperative period, the chronically underfilled LV can have poor compliance, requiring higher filling pressures to maintain adequate stroke volume. Milrinone is often helpful to reduce systemic afterload and improve LV lusitropy and LV function.237,253 Inadequate LV filling can be exacerbated by the presence of pulmonary hypertension. iNO can be useful and has improved the postoperative care and outcome of neonates with TAPVC.198 If respiratory failure was present preoperatively (eg, in obstructed TAPVC), it can be further exacerbated after cardiopulmonary bypass. Postoperative respiratory insufficiency and pulmonary hypertension require use of positive end-expiratory pressure to improve alveolar oxygenation. In addition, the standard therapies for treatment of PAH are recommended, including maintenance of adequate oxygen-
aration, avoidance of acidosis and hypoxia, and provision of sedation, analgesia and neuromuscular blockade.253

If pulmonary hypertension persists, it is imperative to rule out residual pulmonary venous obstruction by echocardiography and cardiac catheterization, if necessary. ECLS may occasionally be needed for short-term support.254

Unique Challenges in CPR
High-quality CPR and resuscitation drugs may be ineffective in generating PBF, LV filling, and cardiac output in infants who have poor LV diastolic function and pulmonary hypertension after correction of TAPVC. It is extremely important to search for and treat possible reversible causes of increased PVR, including inadvertent interruption in targeted pulmonary hypertension drugs, hypercarbia, hypoxia, acidosis, arrhythmia, or cardiac tamponade. If high-quality CPR remains ineffective despite provision of pulmonary hypertension-specific therapy including iNO, 100% oxygen, and establishment of adequate ventilation, ECLS can be beneficial.

Gaps in Knowledge
The evidence supporting recommendations for the care of infants and children with mitral and aortic valve disease is largely extrapolated from adult data, with very limited evidence derived from infants and children.

Recommendations: Left-Sided Heart Disease and TAPVC

1. Given the increased risk of LCOS after repair or replacement of a significantly regurgitant mitral valve, positive-pressure ventilation and vasodilator agents such as milrinone can be useful to provide afterload reduction and improve cardiac output (Class IIa; Level of Evidence C).

2. Persistence of LCOS despite adequate relief of critical aortic stenosis should prompt assessment of adequacy of left-sided structures to support a biventricular circulation (Class I; Level of Evidence B). Conversion to a univentricular strategy can be beneficial before the onset of irreversible end-organ dysfunction (Class Ia; Level of Evidence C).

3. Given the increased risk of LCOS after repair or replacement of a significantly insufficient aortic valve, vasodilator agents such as milrinone can be useful to provide afterload reduction and improve cardiac output (Class IIa; Level of Evidence C).

4. iNO can be useful for newborns with obstructed TAPVC who demonstrate postoperative pulmonary hypertension after surgical repair (Class IIa; Level of Evidence B).

Cardiomyopathy and Myocarditis

Cardiomyopathy
The therapies used to treat LCOS and prevent cardio-pulmonary arrest in patients with cardiomyopathy are determined by the cardiomyopathy phenotype. The distinct cardiomyopathy phenotypes include (1) dilated cardiomyopathy, (2) hypertrophic cardiomyopathy, (3) restrictive cardiomyopathy, (4) LV noncompaction, and (5) arrhythmogenic RV cardiomyopathy.256

Dilated Cardiomyopathy
Dilated cardiomyopathy is the most common phenotype encountered clinically in both children and adults. Careful electrocardiographic monitoring is indicated to assess for atrial or ventricular tachyarrhythmias that could be causing the cardiomyopathy and to assess for frequent ectopy or nonsustained arrhythmias, because these can be harbingers of myocardial irritability or ischemia/infarction and can indicate worsening clinical status. Invasive and noninvasive hemodynamic monitoring can also offer important information to assist in detection and management of prearrest deterioration.

Afterload reduction is an important clinical goal in the setting of dilated cardiomyopathy but must not occur at the expense of end-organ perfusion or coronary/myocardial perfusion. Invasive arterial monitoring provides continuous data to enable better titration of therapy to optimize blood pressure and arterial blood gases. Correction of electrolyte disturbances and avoidance of acidosis are important to maintain cardiac function and avoid worsening ischemia or arrhythmias. Invasive measurement of CVP or PAP provides additional information regarding ventricular preload, diastolic pressures, and cardiac output to aid the titration of therapies and to optimize cardiac function. Ongoing, frequent assessment is required to identify trends in clinical status and need for escalation of care. The potential positive effects of inotropic support must be weighed carefully against the potential negative effects of tachyarrhythmias and increased myocardial oxygen demand and afterload. There are no data to support the use of β-blocking drugs or angiotensin-converting enzyme inhibitors in the management of acute heart failure in the prearrest phase; however, recommendations for their use in stable and chronic heart failure have been described.257 Consideration of inotropic therapy should prompt a discussion of possible use of ECLS. If ECLS or LVAD support is not available on site, any worsening in the child’s clinical status should trigger consideration of referral to a pediatric cardiovascular tertiary care center with mechanical support capability.

Hypertrophic Cardiomyopathy
The management of hypertrophic cardiomyopathy is directed at controlling heart rate and optimizing preload. An elevated heart rate will increase myocardial oxygen demand, exacerbating LCOS.
demand, which can create or worsen myocardial ischemia and increase the risk of life-threatening arrhythmias. Any reduction in preload could lead to worsening outflow gradients and could also exacerbate ischemia. In addition, a reduction in preload can decrease cardiac output and compromise end-organ perfusion and function.

Inotropes should be used with caution in patients with hypertrophic cardiomyopathy. Ongoing ischemia or recalcitrant arrhythmias should prompt consideration of ECMO, but the approach might require modification given anatomic constraints of the hypertrophied ventricle. In the later stages of hypertrophic cardiomyopathy, fibrotic burden from persistent ischemia can result in a dilated cardiomyopathy phenotype, for which management principles are outlined in the Dilated Cardiomyopathy section.

Restrictive Cardiomyopathy

Restrictive cardiomyopathy, although a rare phenotype, requires treatment with careful attention to electrocardiographic changes and monitoring for evidence of myocardial ischemia such as symptoms of chest pain and syncope. These patients present with biventricular diastolic dysfunction resulting in pulmonary edema, elevated PVR, myocardial ischemia, and worsening systolic function. As such, the role of inotropes is limited. Blood pressure is optimized through maintenance of adequate diastolic pressures to ensure adequate coronary perfusion in the setting of elevated LV end-diastolic pressures. Patients with restrictive cardiomyopathy, and some subsets of hypertrophic cardiomyopathy, can be prone to bradyarrhythmias and asystole, requiring pacing to avoid cardiovascular collapse.

ECLS should be considered early in the patient’s clinical course, because patients with restrictive cardiomyopathy can deteriorate quickly or arrest suddenly with little opportunity for preventative measures. In a Pediatric Cardiomyopathy Registry study, the median time from diagnosis to death for those patients who died without transplantation was 0.3 months. ECLS for restrictive cardiomyopathy requires an individualized approach that can be limited by anatomic constraints and the presence of pulmonary hypertension.

LV Noncompaction

LV noncompaction can be associated with other concomitant cardiomyopathy phenotypes, including dilated, hypertrophic, and restrictive cardiomyopathy. Management is typically focused on the associated cardiomyopathy phenotype, which can change over the course of the disease. Particular attention should be given to assessment of LV systolic function and monitoring for ectopy and ventricular arrhythmias, because these appear to be strong predictors of outcome.

ECLS strategies are largely dependent on the associated phenotype. As with other cardiomyopathy phenotypes, LV noncompaction is often associated with metabolic diseases and syndromes that may affect other organ systems and device management.

Arrhythmogenic RV Cardiomyopathy

The development of the arrhythmogenic RV cardiomyopathy phenotype is exceedingly rare in pediatric populations, and management strategies can be found elsewhere.

Myocarditis

Outcomes of infants and children with suspected or confirmed myocarditis can be optimized by early clinical diagnosis and prompt intervention, including early consideration of ICU monitoring and therapy. Fulminant myocarditis can result in decreased cardiac output with end-organ compromise, conduction system disease including complete heart block, and persistent supraventricular or ventricular arrhythmias, all of which can ultimately result in cardiac arrest. Sudden onset of heart block and multifocal ventricular ectopy should be considered as a prearrest state in a patient with fulminant myocarditis. Treatment with external or intracardiac pacing or antiarrhythmic drugs might not be successful, and early transfer to a center for ECLS is recommended.

Appropriate treatment of myocarditis can include mechanical ventilation, diuretic drugs for volume overload, afterload reduction, antiarrhythmic drugs or cardioversion for significant arrhythmias, defibrillation for ventricular fibrillation (VF), pulseless ventricular tachycardia (VT), pacing for advanced heart block, and inotropes for poor perfusion. Inotropes must be titrated with caution, using the lowest possible effective doses, because these drugs can promote arrhythmias and increase myocardial oxygen consumption.

ECLS offers unique opportunities in the clinical management of myocarditis but must be considered in a timely fashion. For patients who have worsening clinical status or incessant ventricular arrhythmias, ECLS can be lifesaving and can help avoid cardiac arrest. ECLS also offers an opportunity to wean inotropic support and assist myocardial recovery or serve as a bridge to cardiac transplantation. The use of ECLS and the use of temporary or more durable ventricular assist devices (VADs) have improved outcomes of myocarditis, with a high possibility of partial or complete recovery of systolic function in the setting of acute fulminant myocarditis.

Unique Challenges in CPR

Once the child with cardiomyopathy or myocarditis develops cardiac arrest, the outcome is poor. Patients with dilated cardiomyopathy have extremely poor ventricular function at baseline, and the dramatic reduction in coronary blood flow and myocardial perfusion that occurs with cardiac arrest further worsens an already
fragile myocardial oxygen supply and demand balance, which makes the likelihood of return of spontaneous circulation (ROSC) low. Patients with hypertrophic cardiomyopathy require high ventricular filling pressures to generate adequate stroke volume and cardiac output. In addition, delivery of blood flow from the epicardium through the hypertrophied myocardium to the endocardium is very dependent on an adequate coronary perfusion pressure and perfusion time. During CPR in the patient with hypertrophic cardiomyopathy, it is difficult to maintain a sufficiently high ventricular filling pressure and coronary perfusion pressure to support effective cardiac output and myocardial perfusion. Causes of cardiac arrest in patients with myocarditis include tachyarrhythmias, conduction abnormalities, and severe ventricular dysfunction, often refractory to CPR, defibrillation, and vasopressors. Therefore, for patients with cardiomyopathy and myocarditis, care providers must focus on arrest prevention.

Early ECLS can prevent arrest and enable survival after cardiac arrest, so early consideration is essential. Mechanical ventilation might be necessary in the patient with cardiomyopathy or myocarditis who presents with severe LCOS and pulmonary edema. It is important to recognize that this is a prearrest state. The negative inotropic effects of drugs used to induce loss of consciousness, as well as the fall in preload after the loss of spontaneous ventilation and the start of positive-pressure ventilation, can culminate in cardiac arrest. Careful preparation and anticipation are essential so that if intubation is necessary, it is performed under controlled conditions, with immediate availability of ECLS, if possible. Such planning might include early transfer to a center that can provide ECLS.

Gaps in Knowledge

Much of the literature addressing arrest prevention and resuscitation of children with cardiomyopathy is extracted from adult experience and single-center experience. Acute fulminate myocarditis is inadequately studied because it is an uncommon disease, and there is no national myocarditis registry to enable creation of adequate data sets for analysis.

Recommendations: Cardiomyopathy and Myocarditis

1. Given the high risk of cardiac arrest in children with acute myocarditis who demonstrate high-risk ECG changes (arrhythmias, heart block, ST-segment changes) and/or low cardiac output, early consideration of transfer for ICU monitoring and therapy is recommended (Class I; Level of Evidence C).

2. For children with cardiomyopathy or myocarditis and refractory low cardiac output, prearrest use of ECLS can be beneficial to provide end-organ support and prevent cardiac arrest (Class IIa; Level of Evidence B).

3. Given the challenges to successful resuscitation of children with cardiomyopathy and myocarditis, once cardiac arrest occurs, early consideration of ECLS can be beneficial (Class IIa; Level of Evidence B).

Arrhythmias

Cardiac arrhythmias are generally less likely to cause hemodynamic compromise in children than in adults; however, in the setting of CHD with abnormalities in anatomy, physiology, or hemodynamics, cardiac arrhythmias can be the primary cause of cardiac arrest, can contribute to the development of cardiac arrest, or can result from cardiac arrest in children. Given that specific effective therapies are available to treat arrhythmias, prompt recognition and treatment of life-threatening arrhythmias are essential components of pediatric cardiac arrest prevention and cardiac resuscitation.

Supraventricular Tachycardia

Definitions and Mechanisms

SVT is the most common tachyarrhythmia in children, constituting >95% of all tachyarrhythmias of childhood. The most common types of SVT are atrioventricular reciprocating tachycardia (bypass tract mediated) and atrioventricular nodal reentrant tachycardia. These tachyarrhythmias are called atrioventricular node dependent because the atrioventricular node forms part of the reentrant circuit. One mechanism of atrioventricular reciprocating tachycardia is orthodromic, in which the conduction proceeds antegrade down the atrioventricular node to the ventricle and retrograde conduction occurs from the ventricle through the accessory atrioventricular connection (bypass tract) to the atrium in a circular movement; this results in a narrow QRS tachycardia. Another mechanism of atrioventricular reciprocating tachycardia is antidromic, in which conduction proceeds antegrade down the accessory pathway to the ventricle and retrograde conduction occurs through the atrioventricular node to the atrium; this results in a wide QRS tachycardia. Atioventricular nodal reentrant tachycardia involves the presence of dual atrioventricular nodal pathways (often referred to as fast and slow pathways), with a reentrant circuit developing between the two.

SVT is characteristically a narrow QRS tachycardia (ie, the QRS configuration is similar to the patient’s intrinsic QRS) with little beat-to-beat variability. Heart rates in infants are generally >220 beats per minute and >180 beats per minute in children. P waves are often difficult to identify because they are obscured by the T
wave and, if present, will be negative (ie, retrograde) in leads II, III, and aVF.

Atrophicventricular node–independent atrial tachycardias including atrial flutter, intra-atrial reentrant tachycardia, ectopic atrial tachycardia, and atrial fibrillation can be termed **atrioventricular node–independent tachyarhythmias** because the atrioventricular node does not form part of the arrhythmia circuit. Atrial flutter involves a reentrant circuit confined to the atria. In typical atrial flutter, the reentry circuit originates near the tricuspid valve annulus. The atrial rate often exceeds 250 beats per minute, which results in a classic sawtooth pattern of the P waves. Intra-atrial reentrant tachycardia can have signs of slow conduction within the atria, which can then become the basis for a reentrant circuit, often referred to as intra-atrial reentrant tachycardia.275

In ectopic atrial tachycardia, disordered automaticity causes an atrial focus (or foci) to depolarize at a faster rate than the sinoatrial (sinoatrial node). The P-wave morphology differs from that of the sinus P wave, indicating an origin distinct from the sinoatrial node. Multifocal atrial tachycardia is characterized by at least 3 different P-wave morphologies. Atrial rates range from near normal for ectopic atrial tachycardia to >300 beats per minute for multifocal atrial tachycardia. Atrophicventricular conduction is usually 1:1 but can be variable at higher atrial rates.

Atrophicventricular node–independent SVT can have a regular or irregular ventricular rate depending on the variability of atrioventricular conduction. P waves can be obvious or indistinct but will differ from those present with a sinus rhythm; the morphology of the P wave is determined by the origin of the atrial arrhythmia.

Clinical Implications of SVT in Children With Cardiac Disease

With the exception of the early postoperative period or in the presence of myocardial dysfunction, most infants are able to tolerate SVT without hemodynamic compromise; however, prolonged episodes of SVT can cause deterioration of cardiac function, and infants can present with or develop congestive heart failure or cardiovascular collapse.276 Older children might complain of palpitations, chest discomfort, lightheadedness, or dizziness. Children with underlying CHD or myocardial dysfunction can have a variable presentation depending on the rate of ventricular response and degree of ventricular dysfunction. They often demonstrate signs and symptoms of poor perfusion. The combination of an atrophicventricular node–independent tachycardia with antegrade accessory pathway conduction can result in rapid atrioventricular conduction and hemodynamic collapse. In children with CHD and myocardial dysfunction or severe atrioventricular valve or semilunar valve insufficiency, SVT can cause poor ventricular diastolic filling, reduced cardiac output, and even cardiac arrest.

Junctional Ectopic Tachycardia

JET is an automatic rhythm that originates from the atrioventricular node or high in the His-Purkinje system and gives rise to a narrow QRS complex similar to that of sinus rhythm. It is most commonly observed in the early postoperative period, when patients are most vulnerable to hemodynamic instability. Postoperative JET occurs in ≈14% of infants277 and 6% to 8% of children after CHD surgery.278,279 The highest incidence (20%–26%) of JET after surgery occurs for TOF, aortic arch/VSD repair, d-TGA with VSD, and atrioventricular septal defect repair, as well as after procedures with longer aortic cross-clamp times.277,279,280

Although JET is usually self-limited, it can cause significant hemodynamic instability. JET is effectively treated with atrial overdrive pacing (or dual-chamber pacing if heart block is present). Adjunctive therapies to treat JET include limiting the use of inotropic agents, ensuring adequate sedation and analgesia, and temperature reduction (hypothermia). These therapies can eliminate JET or slow it sufficiently to facilitate atrial overdrive pacing.280,281 Procainamide has been effective in treating JET in single-center case series.280,282 Amiodarone was successful in treating JET in a multicenter, randomized, prospective dose-response study, but adverse events (including dose-related hypotension, bradycardia, and atrioventricular block) were common.283

VT and VF

VT produces rapid, wide QRS complexes that differ from the patient’s intrinsic QRS complexes. VT can be monomorphic (uniform QRS complexes) or polymorphic (differing QRS complexes). A specific type of polymorphic VT is torsade de pointes (“turning of points”), in which the QRS complexes gradually change phase from positive to negative polarity. Monomorphic VT can produce a pulse if the rate of the VT is not too rapid. Although polymorphic VT can initially produce a pulse, it typically deteriorates very rapidly to pulseless VT or VF. VF is marked by coarse or fine disorganized, chaotic electrical activity with no discernible QRS complexes and no pulses.

VF and pulseless VT are shockable cardiac arrest rhythms. Pulseless VT is uncommon in children and is grouped with VF because it soon degenerates into VF.284,285 VF/pulseless VT are less common terminal rhythms during cardiac arrest in children than in adults, occurring in 5% to 18% of pediatric out-of-hospital cardiac arrests and up to 27% of pediatric in-hospital cardiac arrests.286–294 The incidence of VF/pulseless VT as a terminal arrest rhythm increases with age and has a cardiac origin in 21% to 74% of reported cases.291–299
Survival from VF/pulseless VT ranges from 0% to 30% and is typically associated with good neurological outcome when it is the initial arrest rhythm. In a study from the GWTG-R Registry of CPR involving 1005 children who experienced in-hospital cardiac arrest, 27% had documented VF/pulseless VT during the arrest; initial VF/pulseless VT was present in 10%; and subsequent VF/pulseless VT occurred in 15% (in 2% of the patients, the timing of the VF/pulseless VT was not noted). Among children who experienced initial VF/pulseless VT, 35% survived to hospital discharge compared with 11% of those who experienced subsequent VF/pulseless VT. Survival in those who had subsequent VF/pulseless VT was also substantially worse than in those who had no VF/pulseless VT at all during their arrest. Subsequent VF or pulseless VT likely occurs as a reperfusion arrhythmia in the course of resuscitative efforts. Possible explanations for the lower survival include delayed diagnosis of VF/pulseless VT during resuscitation or severity of the underlying myocardial condition. Although the CPR interventions were similar, administration of sodium bicarbonate, epinephrine, atropine, vasopressin, calcium, and antiarrhythmic agents and use of extracorporeal membrane oxygenation (ECMO) were higher in the subsequent VF/pulseless VT group.

Long-QT Syndrome

Long-QT syndrome (LQTS) is a disorder of prolonged cardiac repolarization associated with ventricular arrhythmia and an increased risk of syncpe and sudden death throughout childhood and young adulthood. The syndrome results from genetic defects in cardiac ion channel function, causing QT-interval prolongation and increased risk of the torsade de pointes–type of polymorphic VT. Classification is based on genetic analyses of distinct ion channel mutations, which account for ≈70% of LQTS case. Specific triggers of torsade de pointes include exercise, swimming, startle response, loud noises, emotional lability, and bradycardia during sleep. Molecular analysis of victims of sudden infant death syndrome has implicated LQTS as a potential cause of some deaths.

Drug-induced prolongation of the QT interval led to the description of acquired LQTS. The pathophysiology of acquired LQTS is believed to be similar to congenital LQTS.

Treatment of Arrhythmias

Vagal Maneuvers and Pharmacological Interventions

Vagal maneuvers are noninvasive, nonpharmacological techniques to convert SVT to sinus rhythm through slowing of atrioventricular nodal conduction.Valsalva maneuver, ice to the face, and carotid sinus massage have varying degrees of success and minimal adverse effects.

Adenosine is the drug of choice for atrioventricular node–dependent SVT that occurs from a reentrant mechanism. Adenosine slows conduction through the atrioventricular node, terminating the SVT. Because adenosine has a short duration of action, the tachyarrhythmia can recur, and repeat doses may be needed. Administration of adenosine should not delay direct current cardioversion for tachyarrhythmia resulting in hemodynamic instability. Adenosine will not effectively terminate atrioventricular node–independent tachycardias, such as atrial flutter, ectopic atrial tachycardia, or atrial fibrillation; however, its use in these arrhythmias can have diagnostic value in slowing atrioventricular conduction so that in the presence of atrioventricular block, the type of atrial activity is identifiable on ECG. Esmolol is an ultrashort-acting agent with specific β1-adrenergic antagonism that has also been shown to be an effective treatment for SVT in children. Propranolol is a longer-acting nonspecific β-blocker that in addition to termination of the SVT can also prevent recurrence. However, bradycardia, hypotension, and hypoglycemia are side effects.

Procainamide and amiodarone are effective for treating various types of SVTs in children. These agents both prolong the QT interval and should not be used concurrently without expert consultation from a cardiologist because they could precipitate the torsade de pointes–type VT. Verapamil should not be used in infants because it has caused shock and cardiac arrest in this population. A small, prospective, nonrandomized trial showed that dexmedetomidine reduced the incidence of tachyarrhythmia after congenital heart surgery in infants and children; additional supportive data are needed.

Wide QRS complex tachycardia warrants special mention. In the absence of an underlying bundle-branch block, wide QRS complex tachycardia represents 1 of 4 arrhythmias: VT, orthodromic SVT with aberrant QRS conduction, antidromic SVT, or atrial arrhythmia with antegrade accessory pathway conduction. In one series describing children with wide QRS tachycardia, 20% were found to have VT, whereas 80% had variable mechanisms of SVT as the cause. In another study, orthodromic SVT with aberrant QRS conduction was reported to occur in up to 10% of cases of wide QRS complex tachycardia in children. Adenosine should not be administered for wide QRS complex tachycardia unless it is clear that the underlying rhythm is not atrial fibrillation or atrial flutter with associated antegrade accessory pathway conduction. Blocking of the atrioventricular node in this setting can result in rapid atrioventricular conduction and likely hemodynamic collapse. Expert consultation should be obtained before administration of adenosine as a diagnostic and potentially therapeutic intervention for stable patients who have wide QRS complex tachycardia.
Unstable wide QRS complex tachycardia should be assumed to be ventricular in origin, and prompt cardioversion (if pulses are present) or defibrillation (if pulses are absent) is indicated (see Cardioversion and Defibrillation During Resuscitation). For incessant or unstable ventricular arrhythmias (VF or pulseless VT), amiodarone can be considered, although careful monitoring for hypotension and other adverse effects is required.295,323,227 On the basis of the 2015 AHA PALS guidelines update, lidocaine may also be considered for the treatment of VF or pulseless VT.2

β-Blockers and implantable cardioverter-defibrillators are the mainstays of therapy for LQTS. Advances in the past 2 decades have facilitated gene-directed therapy.298 Breakthrough or refractory episodes of torsade de pointes have been described and should be treated according to AHA/PALS guidelines,3,299,330 with infusion of magnesium sulfate and avoidance of antiarrhythmic drugs such as amiodarone and procainamide that prolong the QT interval. Increasing the heart rate, thus shortening the QT interval, is standard therapy for critically ill patients with breakthrough or refractory torsade de pointes and VF in the setting of LQTS. This can be accomplished with temporary pacing or isoproterenol infusion.299

Pacing
After surgical repair or palliation of CHD, temporary epicardial pacing wires are typically inserted. Recommendations regarding pacing in the postoperative setting are empirical rather than evidence based. Pacing is routinely used in critical but nonemergent situations to improve cardiac output. Overdrive burst pacing can terminate reentrant atrial and VTs. Other indications for atrial pacing include sinus node dysfunction and overdrive pacing for JET.

The major indication for dual-chamber or ventricular pacing is complete heart block. Biventricular pacing has been examined as a means of improving ventricular dysfunction via cardiac resynchronization.144,331 If pacing is effective, there will be an improvement in cardiac output, as assessed by improved perfusion and blood pressure, fall in serum lactate, and rise in mixed SvO₂ or NIRS.

The 2015 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care332 recommendations regarding pacing during resuscitation in children are also empirical. PACing wires, if present, should be used for pacing patients with sinus bradycardia or complete heart block. For symptomatic bradycardia unresponsive to oxygen and adequate airway and ventilation, transcutaneous cardiac pacing is of potential benefit for patients with intrinsic sinus node dysfunction or complete heart block, especially if associated with congenital or acquired heart disease.

Transcutaneous pacing may have a potential role in the management of the following222: (1) sinus node dysfunction with bradycardia after cardioversion for atrial tachyarrhythmia; (2) complete heart block with development of significant bradycardia during general anesthesia for a surgical procedure; (3) patients with permanent pacemakers who are at risk for developing significant bradycardia during pacemaker reprogramming or replacement; and (4) patients who develop a drug-induced bradycardia.

Cardioversion and Defibrillation
Please refer to the Cardioversion and Defibrillation During Resuscitation section.

Gaps in Knowledge
Little information is available regarding the optimal drugs and doses for treatment of pediatric arrhythmias. In addition, although there are data on the use of multisite pacing for cardiac resynchronization in the postoperative setting, the longer-term benefit is unknown.

Recommendations: Arrhythmias

1. Adenosine is an effective therapy for orthodromic (narrow QRS complex) reentrant SVT (Class I; Level of Evidence B).
2. Adenosine administration can be useful as a diagnostic tool but may not be effective to convert wide-complex SVT, ectopic atrial tachycardia, atrial fibrillation, and atrial flutter (Class IIa; Level of Evidence B).
3. Amiodarone and procainamide can be effective therapies for JET, although side effects are common (Class IIa; Level of Evidence B).
4. Postoperative JET is effectively treated with atrial overdrive pacing (Class I; Level of Evidence B). Adjunctive therapies that can be useful to treat JET include careful titration to limit the use of inotropic agents, ensuring adequate sedation and analgesia, treatment of fever, and, as tolerated, temperature reduction (hypothermia). These therapies may eliminate JET or slow it sufficiently to facilitate atrial overdrive pacing (Class IIa; Level of Evidence B).
5. Amiodarone or lidocaine can be considered for postoperative VF and pulseless VT (Class IIb; Level of Evidence C).
6. Neither amiodarone nor procainamide should be administered in patients with known or suspected LQTS without expert consultation (Class III: Harm; Level of Evidence C).
7. Temporary epicardial pacing can be effective for postoperative patients in low cardiac output with sinus node dysfunction,
Age-Dependent Factors Influencing CPR in the Neonate and Infant

An understanding of late fetal and early neonatal myocardial, pulmonary, and brain developmental physiology is helpful to tailor resuscitation therapies in the neonatal and infant population. During the late fetal and early neonatal period, cell division is the major cause of the increase in myocardial mass. This cell division largely ceases by the second month of life; any further increase in ventricular mass is related to hypertrophy.333-334 During the neonatal and infant period, myocyte and myocardial organization and development of the contractile apparatus and extracellular matrix result in increased ventricular compliance and contractility.335,336 The heart of the premature infant has smaller myocardial mass and a thinner LV free wall relative to that of the older infant or child, which results in limited ability to increase stroke volume.333 After birth, LV work increases significantly as separation from the placenta increases SVR. As a result, LV muscle mass increases and LV filling pressure rises, which increases LV stroke volume. At the same time, RV work decreases as PVR falls, and RV stroke volume, PBF, and LV preload increase.337 These changes produce a gradual increase in systemic cardiac output and Do2 during infancy and childhood. Although neonates can modestly increase stroke volume in response to volume administration, the Frank-Starling relationship between filling pressure and stroke volume seemingly exerts a greater effect on ventricular function with increasing postnatal age. For these reasons, neonates and young infants are very dependent on adequate heart rate to maintain and increase cardiac output, an important consideration during all phases of resuscitation.

The neonatal cardiovascular system functions with high levels of endogenous catecholamines and is more dependent on sympathetic stimulation than the adult heart. Inotropic agents can further increase cardiac output in the sick neonate, although response to catecholamines will be modified by conditions that produce upregulation or downregulation of adrenergic receptors.338,339 The junctional sarcoplasmic reticulum is the region of the sarcoplasmic reticulum closest to the sarcolemma and is the most important structure in controlling cytosolic calcium concentration in the myocardium during contraction. The number of junctional sarcoplasmic reticula increases during late gestation and neonatal life, which, over time, increases the inotropy that can be modulated by cytosolic calcium.340 This maturation process influences any measures targeting increasing intracellular calcium as a means to improve contractility.340 As a result, calcium administration to the neonate or infant with low cardiac output can be beneficial to increase both heart rate and contractility.341,342 Similarly, administration of calcium channel blockers to the neonate can compromise myocardial performance.

The fetal and neonatal myocardium appears to be more resistant to hypoxemia than adult myocardium.343 The neonatal heart can work almost as effectively after the reversal of a significant hypoxic-ischemic event as before the ischemic event, whereas the function of the adult heart usually becomes significantly depressed after a hypoxic-ischemic insult.343,344 This increased resilience of the neonatal myocardium to hypoxemia is beneficial during the surgical repair, recovery, and resuscitation of newborns with CHD.

Congenital heart lesions are often classified as critical if they are dependent on blood flow through the ductus arteriosus to support either PBF or SBF. PVR in the fetus is greater than SVR, PVR normally decreases to one-half systemic arterial pressure in the first 24 hours of life and further falls to normal levels by ≈2 weeks after birth.345 The postnatal decline in PVR can be slower in neonates with CHD because of the presence of elevated PAP, LA or pulmonary venous pressure, or left-to-right shunting. Once PVR falls, signs and symptoms of congestive heart failure can develop secondary to increasing left-to-right shunting. In very premature newborns with CHD, the PVR can be low at birth, leading to a very large Qp:Qs and poor systemic cardiac output, which can be difficult to manage. Any conditions that cause a fall in PVR (eg, administration of supplementary oxygen, creation of respiratory alkalosis) can result in significant pulmonary overcirculation and inadequate systemic cardiac output and Do2.346 To improve systemic cardiac output and Do2 and reduce the risk of cardiac arrest, it can be necessary to increase PVR to modify the unfavorable Qp:Qs ratio. (See Balancing SBF and PBF in the section on Single-Ventricle Lesions.)

The capacity of organs to sustain perfusion in low cardiac output states is determined by their capacity for autoregulation; the neonatal heart, brain, and kidneys are efficient at autoregulation and can maintain blood flow over a wide range of perfusion pressures. Skin and muscles have poor autoregulatory capabilities, and decreased skin perfusion is characteristically an early visible marker for decreased systemic cardiac output in infants. Anaerobic metabolism is used when organ blood flow and Do2 decrease below a critical level (the anaerobic threshold), causing accumulation of lactic acid and impairment of organ function. Through adrenergic stimulation, which increases heart rate, SVR, and the...
redistribution of blood flow, neonates and pediatric patients can initially maintain SVR, systolic blood pressure, and organ perfusion despite a fall in cardiac output. Blunting of this neurohumoral response in critically ill children (eg, with administration of sedation) can produce circulatory collapse; therefore, sedatives and analgesic drugs should be given with caution, especially in the unstable neonate with CHD.

Data suggest that brain maturation and development are impaired in neonates with complex CHD. The delays in development arise from failures in brain oxygen and nutrient delivery unique to certain forms of CHD, with examples of deficient content (dextro-TGA) or abnormalities in blood flow (HLHS).

Brain and heart development occur simultaneously in the fetus with CHD. Early morphogenetic programs in each organ share common genetic pathways. Brain development occurs across a more protracted time course, with striking brain growth and activity-dependent formation and refinement of connections in the third trimester.

Delayed fetal brain maturation and development in utero appears to begin in the third trimester of gestation and is consistent with postnatal data demonstrating smaller head circumferences and structurally immature brains in term gestation neonates with CHD, particularly in those with HLHS, compared with normal term neonates. Delays in cellular maturation contribute to the gross structural immaturity of the brain. The maturation of oligodendrocytes has been closely associated with an increased risk for hypoxic and oxidative injury to the white matter that is often seen in neonates with complex CHD both before and after cardiac surgery. Brain immaturity is also a risk factor for periventricular leukomalacia in these neonates. Understanding cerebral blood flow regulation during fetal development, the transitional circulation, intraoperative perfusion strategies, and postoperative recovery will be central to neuroprotective studies in the future.

To minimize the risk of brain injury in the neonate or infant with CHD, every effort must be made to optimize systemic DO$_2$ during the perioperative period. Use of therapeutic induced hypothermia has been reported to improve functional survival in neonates after birth-related hypoxic-ischemic insult, but there are no data to support this treatment after delivery, after cardiac arrest, or after cardiac surgery. The neonatal brain has significant potential for regeneration, and the extent of neurological injury related to cardiac arrest can be difficult to determine in the post–cardiac arrest phase. Intraventricular hemorrhage can occur in sick neonates secondary to rupture of immature vessels in and around the germinal matrix. Intraventricular hemorrhage has very little predictive value for neurodevelopmental outcomes and should not be used as a deterrent to continue resuscitative efforts and optimization of care.

The neonatal periventricular white matter is sensitive to inflammation that can be triggered by cardiopulmonary bypass or ECMO. This effect seems less pronounced in more mature (>36 weeks’ gestational age) neonates.

Gaps in Knowledge
Little is known about the optimal timing of and the potential limits to interventions in premature infants, small for gestational age neonates, or full-term neonates with CHD. Even less is known about the effects of resuscitative strategies on premature or underdeveloped lungs and relatively immature brains. Cardioprotective and neuroprotective therapies in the perioperative period continue to be investigated.

Recommendations: Age-Dependent Factors Influencing CPR

1. Newborns with ductal-dependent systemic circulation are at risk for pulmonary overcirculation and inadequate systemic perfusion and DO$_2$. In the neonate with pulmonary overcirculation, minimizing exposure to supplementary oxygen and minimizing hyper-ventilation can be beneficial to maintain adequate systemic perfusion and DO$_2$ (Class IIa; Level of Evidence C).

2. Calcium administration to the neonate or infant with low cardiac output can be considered to increase both heart rate and contractility (Class IIb; Level of Evidence C).

3. Calcium channel blockers should be used with caution in newborns (Class IIa; Level of Evidence C).

PHARMACOLOGICAL INTERVENTIONS

Dosing and Delivery

Drug doses should be based on ideal body weight, which can be estimated from length (using a length-based tape) if needed. Subsequent doses can be titrated to effect but should not exceed adult doses. Effective medication delivery requires circulation, which can be delayed in the prearrest phase or require chest compressions if there is inadequate native cardiac output.

Central venous access, if already present, is the preferred route of medication delivery for the unstable patient and during resuscitation. During cardiac arrest, if central venous access is not present or readily established, peripheral venous access is acceptable if it can be placed rapidly. If peripheral intravenous access is not already present and cannot be achieved immediately, intraosseous access should be established. The current
ease and sophistication of intraosseous devices makes intraosseous access a reliable route for drug delivery and minimizes the need for the (less reliable) endotracheal route of drug administration. Peripheral intravenous administration of vasoactive medication and electrolytes can result in significant damage at the site and to distal extremities if the medications infiltrate the tissue.

Anesthetic and Analgesic Agents

The provision of sedation and analgesia in the child with congenital or acquired heart disease often requires a modified approach based on the impact of various medications on ventricular preload, ventricular function, and arteriolar resistance in the pulmonary and systemic vascular beds.

During the prearrest phase, patients often require sedation and analgesia during escalating care for low cardiac output or for associated procedures. In the setting of effective CPR and semiconsciousness, the patient may require sedation and analgesia. The choice and dosing of medications should minimize hypotension.

Dexmedetomidine

Dexmedetomidine is an α₂-receptor agonist. It provides effective sedation and mild analgesia without respiratory depression. Retrospective reviews noted a significant decrease in heart rate early during dexmedetomidine infusion in infants and children after cardiac surgery, including heart transplantation. In small case series of children during electrophysiological testing, dexmedetomidine caused a mild but significant decrease in sinus and atrioventricular node function with neonates and infants demonstrating a more significant decrease in heart rate. Although clinically significant bradycardia was not reported, the effect of dexmedetomidine on heart rate can be more pronounced in children at high risk for postoperative heart block or those receiving other drugs (eg, β-blockers or antiarrhythmic drugs) that can produce bradycardia. Rebound tachycardia and an increase in mean arterial pressure have been reported. Inotropic scores are reportedly lower with dexmedetomidine after heart surgery. Dexmedetomidine has additional benefits as an antiarrhythmic drug (see Arrhythmias). The terminal elimination half-life of dexmedetomidine in adults is ~2 hours, whereas it is 3.2 hours in term neonates and 7.6 hours in preterm neonates. Elimination is prolonged by hepatic dysfunction.

The combined benefit of sedation without respiratory depression, reduction in inotropic requirements, and antiarrhythmic effects makes dexmedetomidine an appealing therapy for sedation after congenital heart surgery. Caution is needed for patients with heart rate-dependent cardiac output and those at risk for symptomatic bradycardia or heart block, unless pacing wires are present.

Etomidate

Etomidate is a nonbarbiturate hypnotic drug with a rapid onset and short half-life. It has minimal hemodynamic effects. It reversibly inhibits 11β-hydroxylase, causing adrenal suppression, which has been reported after even a single dose. Etomidate can be used for the stable patient who requires a short procedure or rapid sequence intubation, but in 2010, the AHA PALS guidelines noted that etomidate should not be used routinely in pediatric patients with evidence of septic shock, citing reports of adrenal suppression and higher mortality rates after use of the drug in this population.

Fentanyl

Fentanyl is a synthetic opioid that provides effective analgesia with minimal hemodynamic effects. Bolus dosing to the naive infant can cause chest wall rigidity.

Ketamine

Ketamine causes dissociation between the cortex and the limbic system, providing sedation, analgesia, and amnesia while maintaining respiratory drive and hemodynamics. Ketamine is thought to be an ideal drug for use in children with heart disease because it provides central cardiovascular stimulation and inhibits the reuptake of catecholamines, typically resulting in mild to moderate increases in blood pressure, heart rate, and cardiac output. It can have direct negative inotropic properties and should be titrated cautiously in patients with very poor ventricular function. Because it can increase myocardial oxygen demand, it should be used cautiously in patients with severe heart failure and risk of myocardial ischemia. The incidence of agitation during recovery in children is reported at 8%, with increasing incidence with older age and higher dose. Prospective trials failed to show significant relief of the agitation with adjunctive low-dose midazolam. Although there is little downside to use of supplementary low-dose midazolam in the hemodynamically stable patient, it should be used cautiously in the child with cardiovascular instability.

Propofol

Propofol is a rapid-onset, short-acting hypnotic agent that allows rapid recovery of level of consciousness after administration is stopped. It can cause hypotension and a decrease in cardiac output, cardiac index, and stroke volume index through direct myocardial depression and vasodilation; it should be used with extreme caution in the setting of hypotension and compromised cardiac function. In addition, propofol can inhibit mitochondrial function because it acts as an uncoupling agent in oxidative phosphorylation, so it should not be used in children with mitochondrial disease. Propofol is not approved in children for prolonged sedation after cardiac surgery or in the critical care unit because of the hemodynamic complications and risk for propofol-infusion syndrome.
redistribution of blood flow, neonates and pediatric patients can initially maintain SVR, systolic blood pressure, and organ perfusion despite a fall in cardiac output. Blunting of this neurohumoral response in critically ill children (eg, with administration of sedation) can produce circulatory collapse; therefore, sedatives and analgesic drugs should be given with caution, especially in the unstable neonate with CHD.

Data suggest that brain maturation and development are impaired in neonates with complex CHD.347–349 The delays in development arise from failures in brain oxygen and nutrient delivery unique to certain forms of CHD, with examples of deficient content (dextro-TGA)350 or abnormalities in blood flow (HLHS).351,352

Brain and heart development occur simultaneously in the fetus with CHD. Early morphogenetic programs in each organ share common genetic pathways.353–355 Brain development occurs across a more protracted time course, with striking brain growth and activity-dependent formation and refinement of connections in the third trimester.356

Delayed fetal brain maturation and development in utero appears to begin in the third trimester of gestation and is consistent with postnatal data demonstrating smaller head circumferences and structurally immature brains in term gestation neonates with CHD, particularly in those with HLHS, compared with normal term neonates.357 Delays in cellular maturation contribute to the gross structural immaturity of the brain. The maturation of oligodendrocytes has been closely associated with an increased risk for hypoxic and oxidative injury to the white matter that is often seen in neonates with complex CHD both before and after cardiac surgery.358,359 Brain immaturity is also a risk factor for periventricular leukomalacia in these neonates.347 Understanding cerebral blood flow regulation during fetal development, the transitional circulation, intraoperative perfusion strategies, and postoperative recovery will be central to neuroprotective studies in the future.360

To minimize the risk of brain injury in the neonate or infant with CHD, every effort must be made to optimize systemic D_0^2 during the perioperative period. Use of therapeutic induced hypothermia has been reported to improve functional survival in neonates after birth-related hypoxic-ischemic insult,361 but there are no data to support this treatment after delivery, after cardiac arrest, or after cardiac surgery. The neonatal brain has significant potential for regeneration, and the extent of neurological injury related to cardiac arrest can be difficult to determine in the post–cardiac arrest phase.362 Intraventricular hemorrhage can occur in sick neonates secondary to rupture of immature vessels in and around the germinal matrix. Intraventricular hemorrhage has very little predictive value for neurodevelopmental outcomes and should not be used as a deterrent to continue resuscitative efforts and optimization of care.363

The neonatal periventricular white matter is sensitive to inflammation that can be triggered by cardiopulmonary bypass or ECMO. This effect seems less pronounced in more mature (>36 weeks’ gestational age) neonates.347,364

Gaps in Knowledge
Little is known about the optimal timing of and the potential limits to interventions in premature infants, small for gestational age neonates, or full-term neonates with CHD. Even less is known about the effects of resuscitative strategies on premature or underdeveloped lungs and relatively immature brains. Cardioprotective and neuroprotective therapies in the perioperative period continue to be investigated.

Recommendations: Age-Dependent Factors Influencing CPR

1. **Newborns with ductal-dependent systemic circulation are at risk for pulmonary overcirculation and inadequate systemic perfusion and D_0^2.** In the neonate with pulmonary overcirculation, minimizing exposure to supplementary oxygen and minimizing hyperventilation can be beneficial to maintain adequate systemic perfusion and D_0^2 (Class IIa; Level of Evidence C).

2. **Calcium administration to the neonate or infant with low cardiac output can be considered to increase both heart rate and contractility (Class IIb; Level of Evidence C).**

3. **Calcium channel blockers should be used with caution in newborns (Class IIa; Level of Evidence C).**

PHARMACOLOGICAL INTERVENTIONS

Dosing and Delivery

Drug doses should be based on ideal body weight, which can be estimated from length (using a length-based tape) if needed.3,4 Subsequent doses can be titrated to effect but should not exceed adult doses. Effective medication delivery requires circulation, which can be delayed in the prearrest phase or require chest compressions if there is inadequate native cardiac output.

Central venous access, if already present, is the preferred route of medication delivery for the unstable patient and during resuscitation.3,4 During cardiac arrest, if central venous access is not present or readily established, peripheral venous access is acceptable if it can be placed rapidly. If peripheral intravenous access is not already present and cannot be achieved immediately, intraosseous access should be established. The current...
with amiodarone and lidocaine in the treatment of pediatric patients with VF/pulseless VT in-hospital cardiac arrest, lidocaine (versus no lidocaine) was associated with an increase in likelihood of ROSC. These same registry data did not show an association between lidocaine or amiodarone use and survival to hospital discharge. For patients with LQTS or other channelopathies, lidocaine can be safely delivered, whereas amiodarone can precipitate torsade de pointes.

Dexmedetomidine

Dexmedetomidine is an α₂-receptor agonist, initially introduced as a sedative. In pediatric patients with SVT, dexmedetomidine has been shown to decrease sinus and atrioventricular node function while maintaining blood pressure. In a prospective, nonrandomized study of pediatric postoperative patients after surgery for CHD, dexmedetomidine was associated with a significant reduction in arrhythmias, including VT, JET, and SVT, without a significant increase in heart block.

Esmolol

Esmolol is a cardioselective β₁-antagonist with a short half-life and minimal side effects. Esmolol can decrease the rate and occasionally suppress ectopic atrial tachycardia. Refractory or recurrent reentrant SVT can be slowed and converted (often in conjunction with rapid atrial pacing, adenosine, or electric cardioversion).

Procainamide

Procainamide is a class Ia antiarrhythmic that blocks sodium channels and prolongs QRS duration. It is most commonly used for atrial tachyarhythmias and JET. Serum levels should be monitored to avoid toxicity, and it depresses myocardial function. In a single-center case series of 37 pediatric patients, procainamide was more effective than amiodarone for treatment of recurring SVT, with a lower incidence of adverse effects. Procainamide should not be used in children with LQTS without expert consultation.

Verapamil

Verapamil is a class IV antiarrhythmic drug that functions as a calcium channel blocker. It can be used for SVT in older children but should not be used in infants <1 year of age and should be particularly avoided in neonates, because they have limited intracellular calcium stores. In patients with Wolff-Parkinson-White syndrome, verapamil can facilitate conduction through the accessory pathway, resulting in hemodynamic collapse or VF in the setting of associated atrial fibrillation or flutter.

Electrolytes and Minerals

Electrolyte and mineral imbalances can cause arrhythmias and attenuate the effectiveness of cardioversion, defibrillation, and pacing.

Calcium

Calcium is a potent inotrope in neonates and infants because they have limited intracellular calcium stores. Administration of calcium can be associated with improved myocardial function, as demonstrated by improved blood pressure and echocardiographic evidence of improved systolic function. Calcium can also be effective in other patients with limited intracellular calcium stores, such as those receiving blood products containing citrate-phosphate dextran preservative (see Age-Dependent Factors Influencing CPR in the Neonate and Infant).

Calcium can be administered as calcium chloride or calcium gluconate, with little evidence that either is superior. The 2010 AHA PALS guidelines note that calcium chloride may be preferred because it results in a greater increase in ionized calcium during therapy than calcium gluconate. However, calcium gluconate has lower osmolality and is recommended if the drug must be administered through a peripheral intravenous catheter or to a neonate.

Once an arrest has occurred, however, the role of calcium is less clear. Two recent articles reported an association between calcium use during in-hospital pediatric CPR and risk of mortality. Both were retrospective reviews, 1 single-center (n=19) and 1 multicenter (n=1477) study that found that patients receiving calcium were significantly less stable and were more likely to be in an ICU, receiving mechanical ventilation support and vasoactive infusions. Factors not included in either analysis were prearrest serum ionized calcium concentration, the hemodynamic response to calcium administration, the dose of calcium, and the point during the arrest when calcium was administered. During cardiac arrest, calcium administration is not recommended in the absence of documented ionized hypocalcemia, hypomagnesemia, or hyperkalemia, and it can be harmful by increasing intracellular calcium after myocardial reperfusion.

Magnesium

Magnesium is helpful for treatment of torsade de point or when hypomagnesemia is present. Other than hypotension, there is little downside to administration of magnesium.

Potassium

Administration of potassium is rarely indicated during resuscitation, because metabolic acidosis is associated with intravascular shift of potassium and a rise in serum potassium concentration. However, potassium administration may be required to treat hypokalemia associated with arrhythmias.

Sodium Bicarbonate

Early animal studies showed improved myocardial performance in the absence of acidosis. Significant meta-
bolic acidosis can result in myocardial dysfunction and pacemaker noncapture. In addition, sodium bicarbonate is a reasonable therapy for hyperkalemia in the presence of acidosis. Alkalosis is a potent pulmonary vasodilator, and sodium bicarbonate is a useful therapy during pulmonary hypertensive crises while specific pulmonary vasodilators are being prepared.188

In a retrospective, multicenter cohort study of pediatric patients who had out-of-hospital cardiac arrest, the use of sodium bicarbonate was associated with worse survival.293 The routine use of sodium bicarbonate during cardiac arrest is not recommended in the 2010 PALS guidelines.3,4

Other Drugs

Furosemide

Furosemide has limited use in the prearrest phase and likely no use during CPR. For patients with a perfusing rhythm but a dilated heart with poor function and volume overload, furosemide can help reduce myocardial stretch and avoid cardiac arrest.

Heparin

Heparin should be part of the first line of therapy for a patient with decompensation secondary to known or presumed aortopulmonary shunt occlusion. A heparin dose of 50 to 100 U/kg is appropriate,294 depending on the clinical situation.

Heparin (100 U/kg) is usually administered to patients immediately before ECLS cannulation.395 The dose can be modified in patients at high risk for bleeding, with known or anticipated coagulation abnormalities, or with heparin-bonded circuits, as well as for venovenous ECLS.394

Inhaled Medications

Nitric Oxide

iNO is a selective pulmonary vasodilator that results in smooth muscle relaxation and vasodilation.201 iNO has been well demonstrated to attenuate pulmonary hypertension of the neonate.296 iNO is a first-line therapy for postoperative pulmonary hypertension.397 In the acute setting, there is little downside to a therapeutic trial of iNO unless the patient has pulmonary venous obstruction, mitral stenosis, or dilated cardiomyopathy. In patients with elevated pulmonary venous pressure, iNO will increase PBF and venous return, which, in the face of fixed obstruction or a dilated heart with elevated filling pressure, can worsen pulmonary edema and result in clinical deterioration.

Oxygen

Supplementary oxygen administration is generally helpful for treatment of the patient in prearrest and arrest, although caution should be used when administering high concentrations of oxygen to premature infants or to anyone with an unrestricted aorta-to-pulmonary connection (eg, patent ductus arteriosus, aortopulmonary window, truncus arteriosus), because it can cause pulmonary vasodilation with increased Qp:Qs, compromising SBF. It is unknown whether hyperoxia is detrimental in the post–cardiac arrest phase, and the 2015 PALS guideline update recommendation is that once the patient is stable in the post–cardiac arrest period, it can be reasonable for providers to target normoxemia2,398 (see Pulmonary Management in the section on Post–Cardiac Arrest Stabilization).

Administration of oxygen, with close monitoring, can be beneficial in the setting of apnea or lung disease, while preparing for endotracheal intubation, and before and after suctioning of the endotracheal tube. A past concern that oxygen was harmful to neonates after the stage 1 Norwood palliation more likely reflected the negative effects of oxygen in the setting of an inappropriately large systemic-to-pulmonary shunt. In patients with an appropriately sized shunt after the stage 1 Norwood palliation, oxygen administration has been shown to improve systemic D02 without compromising SBF (as determined by unchanged AVO2, D).394

Muscle Relaxants and Neuromuscular Blockade

In the prearrest phase, patients requiring endotracheal intubation will likely require administration of a muscle relaxant. When the child is in shock or has severe heart failure, administration of muscle relaxants and loss of paralytic blockade will prevent motor responses to pain and will mask signs of seizures. The patient’s level of consciousness will then have to be assessed by vital sign responses to stimulation, voice, or painful stimuli.

Steroids

The relationship between serum cortisol levels and postoperative hemodynamics after congenital heart surgery is not well understood.399,400 Although administration of stress doses of hydrocortisone are reported to improve systolic blood pressure and reduce inotropic score,401–403 a survival benefit has not been demonstrated. Hydrocortisone is typically used for neonates and infants with volume-resistant hypotension requiring escalating inotropic support. Short-term stress dosing of hydrocortisone is preferred because of the risk for healthcare-acquired infection and delayed wound healing.403,404 Single-center studies of preoperative and intraoperative methylprednisolone for neonatal and infant congenital
heart failure showed reduction in inflammatory mediators and postoperative morbidity\(^{405,406}\), however, these findings were not supported in a multicenter database analysis.\(^{407}\)

Atropine

Atropine is a parasympathetic agent. Functioning as an acetylcholine antagonist, atropine augments atrioventricular node conduction and sinus node automaticity. Atropine is effective for vagally mediated bradycardia and can sometimes be helpful in the setting of complete heart block. Atropine can be considered for premedication of patients who are unlikely to tolerate bradycardia, (eg, such as can occur with the administration of succinylcholine and during laryngoscopy). There is little evidence that atropine is beneficial in the treatment of cardiac arrest, but it has been demonstrated to be effective in adults in the prearrest phase for symptomatic bradycardia or atrioventricular block.\(^{408}\) Atropine is less arrhythmogenic than epinephrine. It will cause pupil dilation, which can complicate neurological assessment.

Although a minimum dose of 0.1 mg for patients weighing <5 kg was recommended in pre-2015 AHA PALS guidelines,\(^3,4\) the 2015 ILCOR (International Liaison Committee on Resuscitation) evidence evaluation process\(^{398}\) and 2015 AHA PALS guideline update\(^3\) reported no evidence to support a minimum prophylactic atropine dose during emergency intubation\(^{409}\); lower doses may be appropriate.\(^{410}\)

Vasoactive Agents

Dobutamine

Dobutamine is primarily a β\(_1\)-adrenergic agonist with weak β\(_2\) and α\(_1\) activity. It can be used for patients with LCOS with dilated cardiomyopathy or after cardiac transplantation. A recent European survey reported <20% of pediatric cardiac surgical centers routinely used dobutamine for LCOS after pediatric heart surgery.\(^{411}\)

Dopamine

Dopamine is a sympathomimetic amine that directly stimulates β\(_1\) and α\(_1\) and dopaminergic receptors. In addition, dopamine is a norepinephrine precursor, so dopamine administration increases norepinephrine release. It functions as an inotrope and chronotrope at lower doses and as a vasoconstrictor at higher doses. It has widespread use for LCOS after pediatric heart surgery,\(^{411}\) including after stage 1 Norwood palliation.\(^90\) In a small case series of 13 neonates after stage 1 Norwood palliation, dopamine administration was associated with an increase in oxygen consumption\(^{412}\) presumed to be secondary to the increase in heart rate.

Epinephrine

Epinephrine is a β-agonist at lower doses and an α-agonist at higher doses. It is an effective inotrope and chronotrope and at higher doses is a vasoconstrictor. However, epinephrine also increases myocardial oxygen consumption and in bolus doses causes vasoconstriction that can limit blood flow to end organs. Epinephrine administration can trigger arrhythmias and even VF in an irritable myocardium.

A prearrest small dose of epinephrine can be used in treatment of hypotension or persistent bradycardia with a pulse in the patient with an at-risk myocardium to prevent cardiac arrest and allow time to treat an acute reversible problem (eg, draining of pericardial effusion, sternal opening, revascularization of a shunt) or to initiate ECLS without requiring ECPR. Doses in this scenario should be administered via central venous catheter or intraosseous catheter and titrated to effect based on the patient's response, with a reasonable starting dose of 1 μg/kg (ie, one-tenth the standard resuscitation dose for pulseless cardiac arrest or symptomatic bradycardia).

A pediatric prospective, randomized, double-blind, controlled trial comparing high-dose (0.1 mg/kg) versus standard dose (0.01 mg/kg) epinephrine for in-hospital cardiac arrest demonstrated that high-dose epinephrine was associated with worse 24-hour survival.\(^{413}\) Epinephrine produces undesirable dose-related effects, such as increased myocardial oxygen consumption, so the goal of therapy is use of the lowest effective dose. If epinephrine does not produce improved hemodynamic function and the patient is thought to be an ECLS candidate, then the focus of the resuscitation should be the delivery of high-quality CPR and rapid activation of ECLS, rather than the administration of repetitive doses of epinephrine.

In some patients, epinephrine administration can contribute to ventricular ectopy or fibrillation.\(^{14}\) Such patients may include those who required a prolonged aortic cross-clamp time, preoperative patients with truncus arteriosus, patients with pulmonary atresia with intact ventricular septum and RV-dependent coronary circulation, patients with LQTS, patients with catecholaminergic polymorphic VT, and those with acute fulminant myocarditis. In these situations, if heart function is poor, consider using a lower dose of epinephrine or administering phenylephrine if heart function is reasonable but hypotension is present.

Isoproterenol

Isoproterenol is a β-adrenergic agonist with no α-adrenergic activity. It functions as an inotrope, chronotrope, and vasodilator. Isoproterenol can increase the ventricular escape rate in patients with complete heart block.\(^{414}\) In addition, it is helpful to maintain heart rate and decrease afterload after cardiac trans-
plantation. Isoproterenol is also helpful for patients with β-blocker overdose. It can maintain heart rate and suppress torsade in patients with LQTS. At a low dose, isoproterenol will increase the heart rate, as well as LV preload, without compromising systemic diastolic pressure.

Levosimendan

Levosimendan increases the sensitivity of myocardial troponin c to calcium, functioning as an inotrope. In addition, it acts on adenosine triphosphate–sensitive potassium channels, resulting in vasodilatation. Levosimendan is an effective therapy for decompensated heart failure, and it has been shown to improve LCOS after pediatric heart surgery. In a randomized pilot study, levsimendan and milrinone were found to have similar effects on cardiac index after pediatric heart surgery, although the effects of the 2 drugs followed different time courses (see Low Cardiac Output Syndrome).

Milrinone

Milrinone is a type III phosphodiesterase inhibitor that increases myocardial and vascular smooth muscle cyclic adenosine monophosphate, causing increased intracellular calcium and smooth muscle relaxation, which results in increased contractility and afterload reduction. In a placebo-controlled, multicenter trial of children with CHD undergoing 2-ventricle repair, a high-dose regimen of prophylactic milrinone administration reduced the incidence of LCOS after heart surgery.

Norepinephrine

Norepinephrine is a potent β,α-agonist with only minor β, effects. It can augment coronary blood flow by increasing systemic diastolic pressure at the expense of increased systemic afterload. Norepinephrine is helpful for treatment of LCOS with low SVR.

Phenylephrine

Phenylephrine is an α,-agonist with very little β effect. It causes arterial vasoconstriction, increasing blood pressure with the potential for reflex bradycardia. Phenylephrine is an important therapy for hypercyanotic spells in patients with unrepaired TOF. It is useful for treatment of low SVR caused by vasodilator medications, labile vascular tone (eg, vasculopathy), or sepsis. Phenylephrine maintains arterial diastolic pressure and coronary perfusion pressure; both are important for patients at risk for myocardial ischemia.

Terlipressin and Vasopressin

Vasopressin causes peripheral vasoconstriction without a direct cardiac effect because it acts on vasopressin receptors in blood vessels. The theoretical advantage of using vasopressin (relative to epinephrine) is that it can increase SVR and blood pressure and improve coronary perfusion pressure without increasing the contractile state or the heart rate, which independently increase myocardial workload or oxygen consumption. Increasing doses of vasopressin will result in increasing blood pressure and afterload, which at higher doses will increase myocardial work. In adult studies of prehospital cardiac arrest, vasopressin did not improve survival over epinephrine. Although in the past, vasopressin was included in the advanced cardiac life support algorithm for treatment of shock-refractory VF or pulseless VT, it is no longer included in the advanced cardiac life support recommendation, because the combination of epinephrine plus vasopressin offers no advantage over the use of epinephrine alone. The pediatric experience with the use of vasopressin in cardiac arrest is limited to small case series.

There are data supporting the use of a vasoconstrictor in the setting of persistent hypotension after pediatric heart surgery. A prospective observational study noted significant variability in plasma arginine vasopressin levels after surgery for CHD, but low levels were not found to be associated with poor hemodynamics or inotropic score. However, several case series have shown improved hemodynamics and decreased inotropic score with administration of terlipressin or vasopressin in the setting of extreme LCOS or vasodilatory shock after surgery for CHD.

Guiding Therapy

Recommended initial doses of drugs commonly used in the treatment of LCOS and cardiac arrest are listed in Table 4. Monitoring of heart rate and rhythm, blood pressure, pulse pressure, oxygen saturation, CVP, ETCO₂ pressure, and SvO₂ (or NIRS), as well as blood gas and electrolyte analysis, is needed when the child is unstable. Therapy and subsequent drug doses must be individualized and adjusted for each patient. If no improvement is noted in the clinical status of the patient, further administration of the same medication must be considered and investigated.

Gaps in Knowledge

The US Food and Drug Administration Modernization Act (1997) established economic incentives to pharmaceutical companies by providing an additional 6 months of marketing exclusivity in return for approved sponsor-performed pediatric trials. Nonetheless, in the pediatric cardiac care unit, nearly 40% of the medications used in a pediatric critical care are used for purposes not approved by the US Food and Drug Administration for inclusion in the drug labeling (ie, they are off-label uses). Thus, safety and efficacy of pediatric medication administration is generally based on clini-
<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Indications</th>
<th>Cautions/Precautions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenosine</td>
<td>Initial dose: 100 μg/kg (0.1 mg/kg); maximum single dose: 6 mg rapid IV push; second dose can be double the first dose (ie, give 200 μg/kg [0.2 mg/kg] for second dose, maximum 12 mg)</td>
<td>Atrioventricular node–dependent SVT</td>
<td>Adenosine will not effectively terminate atrioventricular node–independent tachycardias, such as atrial flutter, ectopic atrial tachycardia, or atrial fibrillation. Should not be administered for wide QRS complex tachycardia unless it is clear that the underlying rhythm is not atrial fibrillation or atrial flutter with associated antegrade accessory pathway conduction. Expert consultation should be obtained before administration of adenosine as a diagnostic and potentially therapeutic intervention for stable patients who have wide QRS complex tachycardia.</td>
</tr>
<tr>
<td>Amiodarone</td>
<td>For VF/pulseless VT, in absence of known or suspected long-QT syndrome: Initial dose: 5.0 mg/kg IV/IO bolus Maximum single dose: 300 mg; can repeat to a total of 3 doses Total: 15 mg/kg per 24 h; in adolescents, maximum 2.2 g per 24 h For perfusing atrial or ventricular arrhythmias: Give loading dose of 5 mg/kg over 30–60 min* Maximum single dose: 300 mg; can repeat to a maximum of 3 doses Total: 15 mg/kg per 24 h; in adolescents, maximum 2.2 g/24 h If patient hemodynamically unstable or receiving other medications that lower heart rate, consider lower dose and slower infusion</td>
<td>Shock-refractory cardiac arrest (VF/pulseless VT); atrial and ventricular arrhythmias; JET</td>
<td>Use lower dose and/or slower infusion if patient is hemodynamically unstable or receiving other medications that lower heart rate; can cause hypotension; can prolong QT interval: 1. Obtain expert consultation before administering, if known or suspected long-QT syndrome. 2. Routine administration in combination with procainamide or digoxin is not recommended without expert consultation.</td>
</tr>
<tr>
<td>Atropine</td>
<td>For symptomatic bradycardia: 20 μg/kg (0.02 mg/kg); minimum single dose: 0.5 mg, maximum single dose: 500 μg (0.5 mg) For emergent preintubation bradycardia prophylaxis: 20 μg/kg (0.02 mg/kg) Intubation: No minimum dose; maximum single dose 500 μg (0.5 mg)</td>
<td>Vagal-mediated bradycardia; primary atrioventricular block; emergent intubation bradycardia prophylaxis</td>
<td>Loss of constrictive pupillary reflex to light If at risk for heart block or symptomatic bradycardia, pacing capability should be available; can cause hypotension or bradycardia.</td>
</tr>
<tr>
<td>Calcium chloride (10%=100 mg/mL=27.2 mg/mL elemental calcium)</td>
<td>10–20 mg/kg; maximum single dose: 2g</td>
<td>Hypocalcemia</td>
<td>Precipitates with sodium bicarbonate; rapid IV administration can cause hypotension, bradycardia, or asystole (particularly if patient is receiving digoxin)</td>
</tr>
<tr>
<td>Calcium gluconate (10%=100 mg/mL= 9 mg/mL elemental calcium)</td>
<td>50–100 mg/kg; maximum single dose: 3g</td>
<td>Hypocalcemia</td>
<td>Precipitates with sodium bicarbonate; rapid IV administration can cause hypotension, bradycardia, or asystole (particularly if patient is receiving digoxin)</td>
</tr>
<tr>
<td>Dexmedetomidine</td>
<td>0.5–1 μg/kg bolus; infusion 0.25–1 μg·kg⁻¹·h⁻¹; titrate to effect</td>
<td>For sedation and mild analgesia</td>
<td>If at risk for heart block or symptomatic bradycardia, pacing capability should be available; can cause hypotension or bradycardia.</td>
</tr>
<tr>
<td>Dobutamine</td>
<td>2–20 μg·kg⁻¹·min⁻¹</td>
<td>Myocardial systolic dysfunction (ie, as inotrope and/or vasodilator)</td>
<td>Titrate to effect; can produce hypotension or tachyarrhythmias</td>
</tr>
<tr>
<td>Dopamine</td>
<td>2–20 μg·kg⁻¹·min⁻¹; if ≥20 μg·kg⁻¹·min⁻¹ is required, consider using an alternative adrenergic agent</td>
<td>Systolic dysfunction; postoperative LCOS</td>
<td>Titrate to effect; can produce vasoconstriction and hypertension or tachyarrhythmias; increases myocardial oxygen consumption</td>
</tr>
</tbody>
</table>
Table 4. Continued

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Indications</th>
<th>Cautions/Precautions</th>
</tr>
</thead>
</table>
| **Epinephrine** | For pulseless cardiac arrest: Bolus: 10 μg/kg (0.01 mg/kg, or 0.1 mL/kg of 0.1 mg/mL) concentration during cardiac arrest; maximum dose: 1 mg
 For symptomatic bradycardia: Bolus: 10 μg/kg (0.01 mg/kg, or 0.1 mL/kg of 0.1 mg/mL) concentration; maximum dose: 1 mg
 For treatment of hypotension or persistent bradycardia with a pulse in the patient with an at-risk myocardium*: Give low dose via central administration 1 μg/kg (0.001 mg/kg); continuous infusion: 0.01–0.2 μg·kg⁻¹·min⁻¹ | Cardiac arrest; symptomatic bradycardia; systolic dysfunction; postoperative LCOS | Significant vasoconstriction at higher doses; increases myocardial oxygen consumption |
| **Esmolol** | Bolus: 100–500 μg/kg (0.1–0.5 mg/kg) over 1–2 min
 Infusion: 50–500 μg·kg⁻¹·min⁻¹ | SVT; hypertension | Can cause bradycardia, hypotension, and/or hypoglycemia |
| **Etorphine** | Bolus: 0.2–0.4 mg/kg, over 30–60 s; maximum dose: 20 mg | Procedural sedation | Can cause apnea and adrenal suppression |
| **Fentanyl** | Bolus: 1–5 μg/kg
 Continuous infusion for neonates and young infants: 0.5–5 μg·kg⁻¹·h⁻¹
 Continuous infusion for older infants and children: 1–3 μg·kg⁻¹·min⁻¹ | Analgesia | Can cause apnea and chest wall rigidity in the naive patient |
| **Furosemide** | 1 mg/kg; starting dose of up to 10 mg to naive patient | Diuresis | Can cause hypokalemia, hypochloremic metabolic acidosis, or hypotension if preload dependent |
| **Heparin** | Presumed shunt occlusion: 50–100 U/kg; anticoagulation before ECLS cannulation: 100 U/kg | Presumed shunt occlusion; ECLS cannulation | Can cause bleeding |
| **Hydrocortisone** | 1–2 mg/kg; maximum dose: 100 mg | LCOS not responsive to inotropic agents | Can cause hyperglycemia and/or hypokalemia |
| **Isoproterenol** | 0.05–2 μg·kg⁻¹·min⁻¹ | Post-cardiac transplantation; long QT with torsade des pointes; primary atrioventricular block | Can cause hypotension, tachycardia, and increased myocardial oxygen consumption |
| **Ketamine** | 0.5–2 mg/kg | Procedural sedation | Can cause apnea and increased respiratory secretions; myocardial depressant at high doses |
| **Levosimendan** | Bolus: 12 μg/kg, infusion: 0.1 μg·kg⁻¹·min⁻¹ | LCOS | |
| **Lidocaine** | Bolus: 1 mg/kg, may repeat
 Infusion: 20–50 μg·kg⁻¹·min⁻¹ (repeat bolus dose if infusion initiated >15 min after initial bolus dose) | VF/pulseless VT cardiac arrest; ventricular arrhythmias | Monitor QTc and lidocaine levels; can cause seizures at high levels |
| **Magnesium sulfate** | Pulseless VT with torsade des pointes: bolus: 25–50 mg/kg; maximum dose: 2 g
 VT with pulses: 25–50 mg/kg over 10–20 min; maximum dose: 2 g | VF/pulseless VT arrest with torsade des pointes; hypomagnesemia | Can cause hypotension with rapid administration |
| **Midazolam** | 0.05–0.2 mg/kg | Sedation | Can cause apnea or hypotension |
| **Milrinone** | Bolus: 50 μg/kg, administered over 10–60 min
 Maintenance infusion: 0.25–1.0 μg·kg⁻¹·min⁻¹ | LCOS | Hypotension |
| **Nitric oxide** | Up to 40 ppm | Increased pulmonary vascular reactivity; pulmonary hypertension ± crisis | Methemoglobinemia |
| **Norepinephrine** | Infusion: 0.025–0.3 μg·kg⁻¹·min⁻¹ | LCOS with low SVR; clinically significant vasodilatation | Vasoconstriction; increases myocardial oxygen consumption |
| **Oxygen** | Fio₂ = 21%–100% | Alveolar desaturation | Pulmonary overcirculation with unrestricted aortopulmonary shunt |

*LCOS not responsive to inotropic agents

(Continued)
Recommendations: Pharmacological Interventions

1. For prearrest intubation of the airway: (a) Ketamine can be used to induce acute sedation and loss of consciousness and support hemodynamics (Class IIa; Level of Evidence C). (b) Etomidate may also be used to induce acute sedation and loss of consciousness with minimal hemodynamic impact; however, etomidate is potentially harmful in the setting of septic shock because of the increased risk of adrenal insufficiency (Class III; Harm; Level of Evidence B). (c) Dexmedetomidine can be useful for procedures with the intention to avoid respiratory depression or for patients with arrhythmia requiring sedation (Class IIa; Level of Evidence B). (d) Sedative drugs are potentially harmful for patients with severe ventricular dysfunction or LCOS and should be used with appropriate monitoring and the personnel available to initiate resuscitation, if needed (Class III; Harm; Level of Evidence C).

2. Adenosine is not useful to treat ectopic atrial tachycardia, atrial fibrillation, or atrial flutter (Class III: No Benefit; Level of Evidence B). Adenosine can be life-threatening for atrial fibrillation with an antegrade accessory pathway (Class III: Harm; Level of Evidence B). In postoperative patients with temporary atrial epicardial pacing wires, rapid atrial pacing has fewer side effects than adenosine.
and can be effective as the preferred initial therapy for reentrant SVT (Class Ila; Level of Evidence C). A reduced dose (one-fifth to one-third) of adenosine should be administered to post–cardiac transplantation patients (Class I; Level of Evidence B).

3. Verapamil is not recommended for the treatment of SVT in neonates and infants <1 year of age without expert consultation because it may cause harm (Class III: Harm; Level of Evidence C).

4. During cardiac arrest, calcium administration is not recommended in the absence of documented ionized hypocalcemia, hypermagnesemia, or hyperkalemia and can be harmful (Class III: Harm; Level of Evidence B).

5. Given that severe metabolic acidosis can lead to pacemaker noncapture, sodium bicarbonate can be useful to facilitate pacemaker function (Class Ila; Level of Evidence C).

6. During cardiac arrest, the routine use of sodium bicarbonate administration is not recommended (Class III: Harm; Level of Evidence B). Sodium bicarbonate administration is reasonable during special situations such as severe metabolic acidosis with myocardial dysfunction or pacemaker noncapture and hyperkalemic cardiac arrest (Class Ila; Level of Evidence C).

7. Hydrocortisone may be considered to treat the patient with hypotension unresponsive to vasoactive therapy or volume resuscitation (Class IIb; Level of Evidence C).

8. Atropine administration may be reasonable as a premedication in specific emergency situations where there is a high risk of bradycardia (ie, such as may occur during emergency intubation) (Class IIb; Level of Evidence C). A typical dose is 20 μg/kg, with a maximum dose of 500 μg (per the 2015 PALS guidelines update, there is no longer a minimum dose of 100 μg when atropine is given for emergency intubation) (Class IIb; Level of Evidence C).

9. During CPR, it is reasonable to give 10 μg/kg (0.01 mg/kg, or 0.1 mL/kg of the 0.1 mg/mL concentration) of intravenous epinephrine (Class Ila; Level of Evidence C).

10. For treatment of hypotension or persistent bradycardia with a pulse in the patient with an at-risk myocardium, it is reasonable to titrate a smaller prearrest dose of epinephrine (eg, 1 μg/kg [0.001 mg/kg]) to achieve a desired hemodynamic effect and reduce the risk for ventricular arrhythmias (Class Ila; Level of Evidence C).

11. Phenylephrine can be an effective therapy for hypercyanotic spells in patients with unrepaired TOF (Class Ila; Level of Evidence C).

PHASES OF CARDIAC ARREST

Prearrest Phase

Principles of Intubation, Airway Management, and Respiratory Support

Children with congenital or acquired cardiac disease often require respiratory support. Indications for advanced airway management include respiratory failure, cardiac failure, and the need for procedural sedation and analgesia (depending on the sedation and analgesia agents used and doses given). Importantly for the child with systemic ventricular dysfunction or systemic valvar insufficiency, positive-pressure ventilation can provide a form of ventricular support by reducing systemic ventricular afterload and work of breathing.

Children with cardiac disease have an increased incidence of extracardiac anomalies or concomitant syndromes that can include airway anomalies. Preparation for intubation should include consideration of conditions that could lead to a difficult airway (eg, macroglossia [trisomy 21], tracheal stenosis or tracheomalacia [VACTERL Association], and cleft palate [velocardiofacial syndrome]).

The goals of airway management include maintenance or improvement of DoS, reduction in oxygen consumption, and control of minute ventilation and carbon dioxide elimination. Adverse events during airway management occur more frequently in patients with cardiac disease or comorbidity, especially single-ventricle patients. Therefore, a complete understanding of the patient’s cardiac and airway anatomy, current cardiac function and valvar insufficiency, presence of tamponade physiology, and predisposition for arrhythmia, as well as knowledge of the child’s sedation/analgesia and airway history, is imperative when planning for an airway intervention. For some patients, a resuscitation plan may be required before placement or removal of an airway. Noninvasive ventilation techniques, with a lower associated risk profile, can at times be an effective alternative to tracheal intubation and ventilation.

Both the desired and undesired consequences of intubation can be ascribed to 3 unavoidable effects of initiation of assisted ventilation and airway instrumentation. First, the transition from spontaneous ventilation, with net negative (relative to the atmosphere) high-amplitude swings in pleural and intrathoracic pressure, to positive-pressure ventilation is associated with both increased CVP and decreased venous return. Second, the effects of the pharmacological agents used
during intubation on myocardial performance and vascular tone can only be partially anticipated, and there can be significant individual and condition-dependent variability. Third, the combination of pharmacology, stimulation during instrumentation, and subsequent altered lung expansion and gas exchange impacts autonomic tone and circulating catecholamines and can cause (unintended) deterioration of myocardial performance or development of myocardial ischemia. Because the rapid superimposition of reduced venous return, impaired contractility, and reduction in vascular tone has the potential to significantly reduce cardiac output, the clinician should consider the need for preventative or prophylactic administration of vasoactive agents in addition to ECLS standby. Low cardiac output leads to a delay in onset of administered drugs. Impatience and readministration can lead to unwanted side effects of the accumulated dose. Hemodynamic collapse usually develops several minutes after airway manipulation has occurred, because the combined effects of sedation, analgesia, and the drop in intrinsic catecholamines can markedly compromise coronary perfusion.

Administration of pharmacological agents (see Pharmacological Interventions) should be undertaken with anticipation of both the intended and undesired effects and the likely response of the individual patient. Bradycardia associated with succinylcholine administration or vagal stimulation can result in decreased arterial diastolic pressure, decreased coronary perfusion pressure, myocardial ischemia, and cardiac arrest. Prevention of bradycardia can be achieved with anticipatory administration of atropine or glycopyrrolate, but the onset of these drugs is delayed once bradycardia ensues. Furthermore, cardiac output might not be increased by anticholinergic drugs if hypoxia is present or bradycardia persists. Low-dose epinephrine (1 μg/kg) should be available for treatment of hypotension or persistent bradycardia with a pulse in the patient with an at-risk myocardium. Combinations of sedative-hypnotic and analgesic medications can be used to control arousal responses, pain, and agitation (see Pharmacological Interventions).

When the use of neuromuscular blockade is considered, indications for and effects of the drugs should be clarified before use. In addition, neuromuscular blockade must be undertaken with appropriate monitoring and a backup plan for support of the airway and ventilation. Although the use of neuromuscular blockers with sedation/analgesia generally creates better conditions for intubation, their administration is occasionally followed by a “can’t intubate, can’t ventilate” crisis, so the healthcare team must have a plan in place.

Succinylcholine can transiently increase oxygen consumption, carries risks of hyperkalemia and malignant hyperthermia in susceptible children, and has a long enough duration of action that in the event of failure to ventilate, return of spontaneous ventilation will not reliably occur before hypoxic injury. Nondepolarizing muscle relaxants might be a safer alternative, because they have fewer adverse effects, produce excellent intubating conditions, and can be reversed within 3 minutes if necessary.

Neuromuscular blockade alone does not prevent nonshivering thermogenesis in neonates, whereas opioids and inhaled anesthetic agents do. Reduction in muscle work is ensured by neuromuscular blockade (with appropriate sedative and analgesic drugs), but effects on whole-body oxygen consumption depend on the patient’s condition.

Endotracheal intubation can be performed with either cuffed or uncuffed tracheal tubes. An appropriately sized uncuffed or a cuffed endotracheal tube is necessary to minimize air leak and resultant inadequate positive-pressure ventilation during resuscitation. Position of the endotracheal tube should be confirmed by direct ET$_{CO_2}$ waveform capnography combined with clinical assessment, including auscultation and assessment of chest expansion. If continuous waveform capnography is not available, a limbus exhaled carbon dioxide indicator can be used, with clinical assessment to confirm tracheal tube placement. Success of tracheal intubation via direct laryngoscopy is increased with proper positioning of the child to align the oral, pharyngeal, and laryngeal axes to create a direct line of sight from the child’s mouth to the vocal chords/glottic opening, and with the use of appropriately sized laryngoscope blades and tubes. The use of video laryngoscopy has a theoretical advantage, but its use has not been shown to increase success. For patients with known or suspected difficult airways, expert consultation and reference to algorithms should be sought, although pediatric-specific algorithms have not been validated.

Because of the rapid changes in arterial oxygenation, systemic and pulmonary resistances, cardiac output, and metabolism that accompany airway management, continuous monitoring should include, when possible, continuous waveform display of ET$_{CO_2}$, pulse oximetry, SvO_2 (using the oxygen saturation in the SVC as a surrogate for a true mixed venous sample) and multisite NIRS. These variables will complement the clinical assessment of airway, ventilation, and perfusion. The continuous presence of exhaled carbon dioxide during ventilation requires alveolar ventilation, PBF and SBF, and metabolism. As a result, monitoring of the ET$_{CO_2}$ provides information about gas exchange from airway to mitochondria. The end-expiratory and arterial carbon dioxide gradient is increased with both dead space and shunt and is increased proportionally to the degree of desaturation in children with...
CHD. In children with no intracardiac or great vessel shunt, changes in ETCO₂ can be a direct indication of changes in PBF and herald hemodynamic compromise.

When positive-pressure ventilation is provided, the airway pressures used and the blood gas values to be targeted must be individualized for each patient on the basis of the child’s cardiac lesion and hemodynamic status. Airway pressures in infants and children with cardiac disease should be titrated judiciously in the setting of parenchymal lung disease. In children with complete mixing or single-ventricle physiology, higher airway pressures can be beneficial to restrict PBF. Alternatively, lower airway pressures can be desirable for patients with RV systolic and diastolic dysfunction. No matter what the underlying cardiovascular physiology is, it is important to remember that high airway pressures will reduce systemic venous return and PBF in a 2-ventricle heart or will reduce total cardiac output in the child with complete mixing or single-ventricle physiology. Inadvertent hyperventilation or hyperoxygenation in the child with complete mixing or single-ventricle physiology can result in an unbalanced parallel circulation with pulmonary overcirculation, reduced SBF, and inadequate Do₂, to the tissues.

Although positive-pressure ventilation can provide afterload reduction to the systemic ventricle and increase cardiac output, it can also impede systemic and pulmonary venous return. Increases in intrathoracic pressure will initially recruit lung volume, minimizing PVR, thereby reducing the afterload on the pulmonary ventricle. However, if the lungs are overinflated, PVR will increase, leading to an increase in afterload on the pulmonary ventricle and a reduction in PBF. In the setting of pulmonary hypertension, positive-pressure ventilation has the potential to reduce preload to the pulmonary ventricle, increase intrathoracic pressures and PVR to critical levels, and severely compromise PBF and overall cardiac output. When systolic function is diminished in the child who has no pulmonary ventricle (eg, after a superior cavopulmonary connection or modified Fontan operation), positive-pressure ventilation can improve cardiac output but can compromise PBF by increasing intrathoracic pressure.

Recommendations: Principles of Intubation, Airway Management, and Respiratory Support

1. Patients with CHD have an increased incidence of associated airway anomalies. In-depth understanding of the underlying heart disease and potential associated airway anomalies can be useful before airway manipulation (Class IIa; Level of Evidence C).

2. Risks of anesthetic and sedative agents, airway manipulation, and positive-pressure ventilation associated with intubation in hemodynamically marginal cardiac patients can result in cardiac arrest. Before attempted intubation, providers should discuss strategies to maintain hemodynamics and a resuscitation plan (Class I; Level of Evidence C).

Transport of the Critical Cardiac Patient

The regionalization of pediatric cardiac care has necessitated the transport of critically ill infants and children with heart disease over significant distances. Transport of these high-risk infants and children is associated with potential morbidity and mortality. The goal of prenatal screening is to identify neonates with significant CHD and facilitate antenatal maternal transport rather than postnatal transport of the critically ill newborn. However, high-risk neonates are not always identified prenatally or even at the time of birth. In addition, older infants and children will continue to present with symptomatic heart disease. As a result, interfacility transport of critically ill infants and children will continue to be necessary.

Transported critically ill neonates with CHD are at risk for development of hypothermia, hypoglycemia, hypoxia, and acidosis during transport. Although prospective studies are lacking, large single-center and multicenter registry studies have shown that the transport of infants and children with complex disease (including those with critical cardiac disease) is accomplished with lower patient morbidity and mortality when performed by specialized neonatal and pediatric critical care transport teams, staffed by personnel accustomed to the prevention of complications in the transport setting.

Pretransport Stabilization

The newborn with critical CHD can present in a variety of settings, from the delivery room to a community hospital emergency department. The most common initial symptoms are cyanosis caused by reduction in ducal-dependent PBF, transposition physiology, complete mixing/single-ventricle physiology, or shock caused by reduction of ducal-dependent SBF. Pretransport stabilization includes supportive care for respiratory or cardiac failure, in addition to specific therapies to maintain ducal patency (ie, PGE, infusion), treat arrhythmias, and correct metabolic derangements.

Parallel Circulations

Newborns with a patent ductus arteriosus or systemic-to-pulmonary artery shunt have parallel (as opposed to in-series) circulations. Changes in PVR or SVR in these patients can cause the pulmonary and systemic circulations to become unbalanced and in the extreme can
cause either severe hypoxemia from insufficient PBF or pulmonary overcirculation with inadequate SBF and D_O_2 to the tissues (see sections on Age-Dependent Factors Influencing CPR in the Neonate and Infant and Single-Ventricle Palliation: Perioperative Management). Newborns with unrepaired TGA also have an anatomic parallel circulation. If mixing of systemic and pulmonary venous blood is inadequate (ie, with a restrictive foramen ovale), the infant will be profoundly cyanotic and hypoxicemic, requiring a balloon atrial septostomy. Newborns with obstructed TAPVC require urgent surgical intervention, and respiratory and cardiac support is typically provided preoperatively.

Airway Management

Some infants and children with cardiac disease will benefit from assisted ventilation during transport (see Intubation and Airway Management). The major indication for the placement of an advanced airway before transport is cardiorespiratory failure that is present or likely to develop before arrival at the receiving facility. In this setting, it is essential to adequately secure the advanced airway before patient transport, because reintubation during transport will be difficult. A single-center retrospective case series describing the pretransport and transport management of infants receiving PGE₁ infusion for CHD noted that elective intubation for transport significantly increased the odds of a major transport complication. The risks of prophylactic intubation before the transport of otherwise stable infants on PGE₁ must be weighed carefully against possible benefits.

Respiratory Management of the Critically Ill Infant or Child With Cardiac Disease During Transport

To provide optimal transport of the child with cardiac disease, close monitoring of the child’s P_ACO_2 and ETC_ACO_2 and the titration of fractional inspired oxygen (FIO_2) to target optimal patient systemic oxygen saturation and SBF and PBF are recommended. This will require specialized equipment, including oxygen blenders, capnometry, and point-of-care blood gas analysis. Discrepancies can develop between the ETC_ACO_2 and the arterial P_ACO_2 in the setting of limited PBF with intracardiac shunt and low cardiac output.

Prostaglandin E₁

Neonates presenting with ductal-dependent SBF or PBF are treated with intravenous PGE₁ to maintain patency of the ductus arteriosus. Complications associated with PGE₁ use include apnea, fever, and hypotension. The risk of apnea might indicate the need for insertion of an advanced airway before transport, but the potential benefits of intubation must be weighed against the risk of sedation, positive-pressure ventilation, and potential airway complications. Patient complications are documented in $≈42\%$ of neonatal transports. In one recent series, apnea or hypoventilation developed in 5% of newborns receiving PGE₁ during transport, and elective intubation was independently associated with adverse events. In addition, preoperative intubation (including elective intubation for transport) in newborns with HLHS has been shown to be a risk factor for postoperative morbidity. Because side effects of PGE₁ are typically dose dependent, lower doses of prostaglandin have been recommended if the ductus appears to be open based on echocardiographic evaluation and clinical assessment. The use of lower doses of PGE₁ ($<0.015 \mu g·kg^{-1}·min^{-1}$) was associated with a lower incidence of apnea during transport. In that report, 2% of the 78 infants transported with PGE₁, infusion and without endotracheal intubation developed apnea in transit, and both were receiving PGE₁, $>0.015 \mu g·kg^{-1}·min^{-1}$. In addition to using lower doses of PGE₁, minimizing the concurrent use of respiratory depressants (eg, narcotic drugs and midazolam) during transport reduces the likelihood of apnea with PGE₁.

Inotropic and Metabolic Support

In addition to restoring and maintaining ductal patency, supportive care of the newborn with critical CHD includes support of myocardial function. Correction of hypoxemia and acidosis will typically improve cardiac output. For significant myocardial dysfunction, inotropic infusions are typically used. The use of sodium bicarbonate for severe metabolic acidosis can be appropriate while the underlying issue with SBF and D_O_2 is also addressed. Correction of hypocalcemia and hypoglycemia can also improve myocardial function, because the neonatal myocardium is sensitive to insufficient calcium and glucose stores. Such supportive care is consistent with the AHA 2010 PALS guidelines. (See Low Cardiac Output Syndrome.)

ECLS and Interfacility Transport

ECLS is used for management of cardiac or respiratory failure. The need for ECLS is one indication for interfacility transfer. Transport of the ECLS candidate carries significant risk of deterioration and adverse events, because most patients will already be dependent on high levels of mechanical ventilation and pharmacological support. Given the high risk associated with transport, selected institutions have developed mobile ECLS services with the capability of performing cannulation at the referring hospital and transporting the cannulated patient. Several single-institution case series have described this practice and reported outcomes.

Considerations for Transport to Catheterization Laboratory or Operating Room

Patients with shock or hypoxemia refractory to maximal medical support may be candidates for emergency procedures such as catheter-based balloon/blade septostomy, surgical creation of a shunt, repair of TAPVC, or initiation of ECLS. The optimal location for life-saving
interventions will vary with the institution, personnel, and patient condition, but individual patients might benefit from direct transport from the referring hospital to the optimal site for definitive intervention, such as the catheterization laboratory or operating room. A well-orchestrated team approach for support, diagnosis, and intervention is required regardless of location.

Gaps in Knowledge
The benefits of centralized care for high-risk infants and children with heart disease have been demonstrated. Incorporation of the risks and costs of transport to tertiary centers has not been well evaluated.

Recommendations: Transport of the Critical Cardiac Patient
1. PGE1 should be initiated for newborns with suspected ductal-dependent CHD (Class I; Level of Evidence B).
2. For neonates with prenatal diagnosis of CHD with ductal-dependent circulations and those postnatally diagnosed with echocardiographic documentation of adequate ductal patency, low-dose PGE1 infusion (0.01–0.02 µg·kg⁻¹·min⁻¹) can be effective to maintain ductal patency while minimizing risk of apnea and avoiding the need for intubation (Class IIa; Level of Evidence C).

Low Cardiac Output Syndrome
Children with congenital or acquired heart disease are at increased risk for cardiac arrest and early mortality. Ideally, prevention of cardiac arrest requires patient stratification to match the level of risk with the intensity of monitoring and therapy. There are no universally accepted risk models for patients with congenital or acquired heart disease, but it is generally acknowledged that high-risk patients include those with uncorrected CHD requiring mechanical ventilation, continuous infusion of PGE1, or vasoactive infusions; postoperative cardiac surgery patients; and those patients with severe myocardial dysfunction (myocarditis or cardiomyopathy), pulmonary hypertension, and pulmonary vascular disease or life-threatening arrhythmias.

ICU monitoring often includes continuous monitoring of ECG, blood pressure, CVP, and pulse oximetry. In addition, capnography is used either continuously or intermittently with either nasal cannula or mechanical ventilation. ECG and hemodynamic monitoring, combined with careful clinical assessment, should allow immediate identification of life-threatening arrhythmias, LCOS, bleeding, and tamponade. Cardiac output, perfusion, and DO2 can be indirectly assessed by physical examination, evaluation of central versus peripheral temperature gradient, NIRS, AVO2D, and lactate. (See Precautions in the ICU section under the Location-Specific Arrest Prevention and Response Measures heading.)

LCOS can occur after complex cardiac surgery and can be caused by endothelial dysfunction, activation of the inflammatory cascades, myocardial stunning from intraoperative ischemia and reperfusion injury, changes in loading conditions, and residual lesions or palliated physiology with continued parallel circulation or cyanosis. LCOS and subsequent cardiac arrest can be prevented by strategies that lower oxygen consumption and minimize anaerobic metabolism. These include strategies such as sedation and analgesia with neuromuscular blockade and hypothermia to diminish oxygen consumption, as well as an open sternum in neonates and infants during the postoperative period to limit development of tamponade physiology.

Mechanical ventilation strategies have been tailored to ameliorate the physiological impairment of specific cardiac pathology. For example, providers can facilitate spontaneous breathing or early extubation after repair of “right-sided” lesions such as TOF (see Right-Sided Heart Disease) or for patients with single ventricle who are undergoing superior CPA or Fontan procedures (see Superior CPA and Fontan) to increase pulmonary blood flow. Medical gas therapy includes the use of inspired carbon dioxide to promote pulmonary vasoconstriction or cerebral vasodilatation among patients with parallel circulation or use of iNO to induce pulmonary vasodilation.

Drug therapy is marked by a high degree of interinstitutional variability, with no universally accepted strategy. Therapy includes the use of prophylactic inotropic support and augmentation of support for worsening cardiac output. Commonly used classes of drugs include phosphodiesterase inhibitors, catecholamines, and nitric oxide donors/generators (nitroprusside and nitroglycerin), as well as pure vasoconstrictors such as norepinephrine, vasopressin, or phenylephrine.

The Prophylactic use of Milrinone After Cardiac Operations in Pediatrics (PRIMACORP) study demonstrated a 64% relative risk reduction in LCOS in children with CHD undergoing 2-ventricle repair who were prophylactically treated with a high-dose regimen of milrinone (75 µg/kg bolus followed by 0.75 µg·kg⁻¹·min⁻¹ for 24–36 hours). A low-dose regimen (25 µg/kg bolus followed by 0.25 µg·kg⁻¹·min⁻¹ for 24–36 hours) was not beneficial in reducing LCOS. A limitation of this study was that the diagnosis of LCOS was based on clinical judgment rather than objective evidence of diminished systemic DO2.

Levosimendan sensitizes myocardial troponin C to calcium and increases inotropy. Intracellular calcium is not increased, so diastolic properties are maintained. Levosimendan also results in systemic, pulmonary, and coronary vasodilation through adenosine triphosphate–

dependent potassium channels, and favorable impact on myocardial oxygen consumption has been report-
ed.416,483 In 2 randomized controlled trials, levsimet-
dan administration lowered myocardial oxygen con-
sumption, improved cardiac output, or both.417,484,485 Levsimendan is not available in the United States.

In the absence of residual anatomic lesions or coro-
nary insufficiency, postoperative LCOS often resolves. In
adult studies, preemptive goal-directed hemodynamic
management, including administration of catechol-
amines, improved outcome.486,487 There is no consensus
regarding the threshold of catecholamine and vasoactive
infusions that should trigger the initiation of mechanical
circulatory support for postoperative LCOS. However, sta-
stabilizing a patient with ECLS allows reduction of inotropic
support and can prevent cardiac arrest. For patients with
heart failure awaiting transplantation, portable VADs are
often used if heart failure worsens (as demonstrated by
the need for escalating inotropic or vasodilator support,
mechanical ventilation, or worsening renal function).
Both ECLS and VAD therapy are best used for LCOS be-
fore cardiac arrest in appropriate patients.

Hypotension in the postoperative cardiac patient
might not be from LCOS but from vasodilatory shock.
These hypotensive patients have low SVR with normal or
increased cardiac output. They are typically warm, with
strong pulses, brisk capillary refill, and no evidence of aci-
dosis. Therapy for these patients includes vasoconstrictors
and hydrocortisone (see Endocrine Management section
under the Pharmacological Interventions heading). Their
hypotension is typically catecholamine resistant, and fluid
resuscitation is minimally effective.

Gaps in Knowledge
Although LCOS is well described after heart surgery in
infants, therapy is variable and is based on the child’s
condition and the congenital heart lesion present. This
heterogeneity creates challenges for prospective tri-
als to evaluate the efficacy of specific management or
pharmaceutical therapies.

Recommendations: Low Cardiac Output
Syndrome

1. Milrinone is effective to decrease LCOS in
 infants after surgery for CHD (Class I; Level
 of Evidence B).

2. Levsimendan can be useful to decrease
 LCOS after surgery for CHD (Class IIa; Level
 of Evidence B).

Location-Specific Arrest Prevention and Response
Measures

Precautions in the ICU
It can be very challenging to reestablish spontaneous
circulation after cardiac arrest in children with heart
disease. Data from the STS-CHSD from 2000 through
2009 revealed an overall mortality rate after post opera-
tive cardiac arrest of 49.4\%, ranging from 15.1\% to
62.3\%, varying by age and complexity of the heart dis-
ease, compared with a 2.8\% mortality rate in children
who did not experience cardiac arrest after surgery.83 In
the AHA GWTG-R Registry, children who experienced
cardiac arrest after cardiac surgery had an in-hospital
mortality rate of 63\% (ie, only 37\% survival to hospi-
tal discharge), and those with medical cardiac disease
had an in-hospital mortality rate of 72\% (ie, only 28\% sur-
ival to hospital discharge).5 Thus, measures to avoid
cardiac arrest are of utmost importance.

Prevention of cardiac arrest in an intensive care set-
ting requires optimal staffing with experienced person-
nel, appropriate monitoring, and an index of suspicion
for underlying complications.14 Improving outcomes for
patients at risk for arrest requires not only preventive
strategies but also the capabilities to intervene with ap-
propriate goals across the continuum of conditions from
prearrest to postresuscitation intensive care.488 In the
STS-CHSD, the incidence of cardiac arrest was no lower
among high-volume surgical centers (ie, >350 cases per
year) than among low-volume surgical centers (ie, <150
cases per year), but survival was higher among the high-
volume centers. This information supports the growing
recognition that high-volume centers might be more suc-
cessful at “rescuing” patients once complications occur.83

Staffing. Staffing considerations include provider level
of experience, nurse to patient ratios, presence of unit-
designated specialists, and level of physician coverage.
In a recent survey, 50\% of reported centers perform-
ing congenital heart surgery had a dedicated cardiac
ICU,489 although such units have not yet documented
improved outcomes.490 Descriptive studies have docu-
mented associations between lower patient to nurse
ratios and increased nursing level of experience with
improved outcomes in pediatric cardiac ICUs491 and
improved resuscitation outcomes with more experi-
enced bedside nurses.492

In-hospital versus out-of-hospital attending physi-
cian coverage varies across cardiovascular surgical cen-
ters. Any differences between in-hospital versus out-of-
hospital attending physician coverage can be blunted
if the physician is able to monitor many hemodynamic
variables and review digital images of x-rays and scans
off-site. In a retrospective case series, the presence of
an attending physician at the bedside at a tertiary train-
ning program was not associated with increased resusci-
tation success; however, arrests on weekend days were
associated with worse outcome.492 Multi-institutional
nursing survey data demonstrated significant improve-
ment in hospital survival after pediatric heart surgery
when an experienced critical care nurse provided the
patient care.493 Similarly, nursing survey data linked to

493
STS data revealed that higher levels of nursing education and experience were significantly associated with fewer complications.494

Monitoring.

Brain Natriuretic Peptide. The concentration of brain natriuretic peptide is monitored clinically in adults to trend heart failure severity and predict death.495 Serum brain natriuretic peptide can also be used to determine the impact on the myocardium of acute events such as endotracheal extubation,496 weaning of inotropic support, and recovery during mechanical circulatory support.497 In some patient populations, such as neonates after the stage 1 Norwood palliation, trends in postoperative brain natriuretic peptide levels are predictive of outcome.498 Although brain natriuretic peptide concentration alone does not predict an impending cardiac arrest, an acute increase or upward trend can suggest the need to alter management, such as increasing inotropic support or initiating mechanical ventilation or mechanical circulatory support, as appropriate.

Lactate. Lactate accumulates from anaerobic metabolism when there is inadequate SBF and DO2 to the tissues. An elevated serum lactate has prognostic significance when the serum lactate rises in the presence of a larger base deficit and metabolic acidosis.499 In 2 case series, survival among children with elevated serum lactate after cardiovascular surgery was lower than survival among children in whom the serum lactate was not elevated.500,501 However, the reported absolute levels and the rate of rise of lactate102 that predicted poor outcome, including cardiac arrest or need for ECLS, varied among the reported studies. In single-institution case series, a pattern of rising lactate, worsening metabolic acidosis, and longer time that the lactate remained elevated have been associated with a higher risk of adverse outcomes, including the need for ECLS and cardiac arrest.503,504

Mixed SVO2. Despite the use of critical postoperative monitoring, identification of subtle decreases in systemic DO2 or early LCOS is difficult. The mixed SVO2 can be used to assess for changes in systemic DO2, oxygen consumption, or both. A true mixed venous oxygen sample can only be obtained in the pulmonary artery in patients with a structurally normal heart with no left-to-right intracardiac shunts. Saturation of systemic venous blood, sampled preferably from the SVC or, alternatively, the IVC, can be used as a surrogate for the mixed SVO2.44 Monitoring of the SVO2 can be accomplished with periodic sampling or use of a continuous monitor.18,19,21,35,47,507

The SVO2 reflects the balance between DO2 and oxygen utilization (ie, oxygen supply-demand ratio).33 An increase in the SVO2 can reflect improvement in systemic DO2, a reduction in oxygen consumption, or both. Continuous SVO2 monitoring, as part of a bundle of goal-directed therapy, has been shown in a randomized clinical trial of pediatric patients with sepsis to improve survival.508,509 The SVO2 can be used as a target biomarker for intervention to optimize systemic DO2 and improve outcome.34,94

AVO2D, the difference between the systemic arterial oxygen saturation and SVO2, is a function of cardiac output, oxygen carrying capacity, and oxygen consumption. In patients with arterial oxygen desaturation, the AVO2D can help distinguish intracardiac mixing, compromised alveolar oxygenation, and low cardiac output. When oxygen carrying capacity and cardiac output are adequate, the SVO2 will be >25% to 30% lower than the Sao2, indicating that systemic DO2 is adequate. A larger AVO2D (ie, >30% difference between the SVO2 and the Sao2) indicates a fall in cardiac output and DO2 to the tissues, with resulting increase in tissue oxygen extraction.

A low SVO2 after the stage 1 Norwood palliation is predictive of worsening outcome, including worse neurodevelopmental performance99 and need for ECLS.35 Increasing AVO2D reflects worsening DO2 or increased oxygen consumption (or both), and the SVO2 and AVO2D provide gauges of the need for and efficacy of therapies such as inotropic and vasoactive agents, sedation/analgesia and neuromuscular blockade, mechanical ventilation, and temperature control. An increasing AVO2D in the face of maximum medical management can be an indication for ECLS to avoid cardiac arrest. For additional information, please see Assessment of Systemic Oxygen Balance.

Near-Infrared Spectroscopy. NIRS provides a noninvasive continuous estimation of venous-weighted oxygen saturation in different regions of the body. Typically, 2 probes are used to provide cerebral and somatic (splanchnic, renal) estimates of oxygenation, reflecting circulations with intense flow-metabolism coupling and sympathetic controls, respectively.36 The value recorded from the somatic site is typically higher than that recorded from the head. With development of shock, there is a shift of blood flow from the splanchnic and somatic circulations to preserve cerebral blood flow. This physiological response to shock is reflected in the NIRS data by a drop in somatic oxygen saturation compared with the cerebral values.

NIRS technology is less invasive than direct SVO2 measurement, and it can be used in non-ICU settings and during dynamic conditions, allowing assessment of venous oxygen status during physiological or hemodynamic stress.510-513 In combination with pulse oximetry, a noninvasive estimate of AVO2D is possible. With noninvasive estimates of arterial and venous saturation, changes in complex cardiovascular physiology can be decoded, including changes in shunt magnitude and direction and the distribution...
of cardiac output. Although controversy remains as to the predictive value of NIRS to direct clinical care, it has been shown to correlate with serum lactate and SvO₂. Prolonged cerebral NIRS desaturation after cardiopulmonary bypass is associated with worse neurological outcome in single-ventricle patients. Low renal/somatic NIRS is associated with renal dysfunction, metabolic acidosis, and a range of poor outcomes, including need for CPR and ECLS. Although more evidence exists for the clinical utility of NIRS than is available for most other monitoring devices, its use is not universal. However, consensus assessment supports its use as safe and effective.

Arterial Blood Gas, Point-of-Care Testing. Rapid arterial blood gas analysis is important for patients with marginal hemodynamic status and those with acute changes in clinical status. Current bedside point-of-care testing systems can provide immediate, reliable arterial blood gas analysis and electrolyte, lactate, and hemoglobin concentrations. Although intuitive, there are no data showing that more rapid availability of laboratory results is associated with improved outcomes.

On-Unit Chest Radiograph. On-unit chest radiography has become a current standard of care. It includes rapid technician response, immediate viewing of the radiograph, and wireless radiologist interpretation. This immediate access to interpreted radiographs is important for the care of the patient with acute or rapidly worsening cardiopulmonary function and can be very valuable to confirm appropriate device placement and to assess for abnormal fluid or air collections.

On-Unit Echocardiography. Echocardiography is invaluable in the pediatric and neonatal intensive care settings. In addition to evaluation of CHD, echocardiography enables evaluation of systolic and diastolic function, estimation of PAP, evaluation of volume status and valvar insufficiency, and assessment for pericardial fluid or clot. Targeted echocardiography performed by noncardiologists in the ICU and emergency department can be useful to evaluate hemodynamic status, but in the presence of underlying cardiac pathology, input from a pediatric cardiologist is strongly recommended.

Echocardiography for emergent or urgent use requires on-unit equipment and acquisition and interpretation of images. Anticipation of patient deterioration and close patient monitoring can transition an emergent echocardiogram to an urgent echocardiogram. Important reasons to perform an urgent echocardiogram include the need to evaluate ductal patency, residual postoperative lesions, ventricular function, valvar insufficiency, PAP estimate, effusions (pericardial or pleural), and atrial septal position after ECLS cannulation. Accurate identification of the pathogenesis of hemodynamic compromise can guide management to avoid clinical deterioration.

Rapid-Deployment ECLS. Rapid-deployment ECLS can be used to prevent cardiac arrest when a patient’s clinical condition continues to worsen despite maximal medical therapy. Rapid deployment is also used to provide ECPR if cardiac arrest does develop. Small-volume circuits require only saline prime, whereas larger-volume circuits require blood prime. With the exception of isolated hypoxemia, venoarterial ECLS is usually required. (See ECLS and ECPR section under the Mechanical Support heading.)

ECLS has been shown to be useful in supporting patients with complex CHD and respiratory failure caused by viral respiratory infections and cardiac dysfunction related to arrhythmias. Such support can prevent deterioration to cardiac arrest.

Detection and Management of Complications After Cardiac Surgery.

Pericardial Tamponade. Pericardial effusions occur commonly after cardiac surgery, either early because of residual bleeding or as a complication of transthoracic intracardiac line displacement, or later because of postpericardiotomy syndrome. Pericardial effusions can be benign or hemodynamically significant, and their hemodynamic significance is not always related to the size of the effusion or presence of atrial or RV diastolic collapse. Classic signs of cardiac tamponade include tachycardia, hypotension, and pulsus paradoxus; however, such classic signs can be absent or difficult to detect in the presence of LCOS. The sensitivity of the echocardiographic right atrial and RV diastolic collapse is variable; however, even moderate effusions can add to the instability of a patient with already compromised hemodynamics (eg, myocardial dysfunction, arrhythmia, single-ventricle physiology). Access to emergent interpreted imaging for pericardial effusion is important. This can be in the form of on-unit echocardiogram or ultrasound. In the postoperative patient, pericardial tamponade can also occur with the accumulation of clot, which is more difficult to interpret by echocardiogram than fluid but should be suspected in the presence of tamponade physiology. Tamponade physiology, even in the absence of pericardial fluid by echocardiogram, warrants sternal reopening or exploration.

Provision of positive-pressure ventilation and procedural sedation and analgesia for pericardiocentesis can precipitate cardiac arrest, particularly in neonates and infants. Positive-pressure ventilation reduces preload to the RV, further contributing to the tamponade physiology; as a result, it should be administered with knowledge of its potential downside. Ketamine is often preferred because it has a minimal effect on blood pressure and allows patients to continue to breathe spontaneously. Neurohumoral mechanisms that main-
tained contractility and SVR can be reduced by all sedative-hypnotic medications, and anticipatory administration of fluid to increase preload and epinephrine to increase circulating catecholamine can be helpful to prevent or treat deterioration in circulatory function during sedation and respiratory support.

Arrhythmias. Arrhythmia can be an undetected cause of refractory low cardiac output. If not identified and treated, chronic arrhythmia can result in myocardial dysfunction. Arrhythmias that can continue undetected include ectopic atrial tachycardia and atrial flutter (fixed heart rate of 150 to 160 beats per minute if 2:1 block). For further detail, see section on Arrhythmias.

Low Cardiac Output Syndrome. LCOS is predictable after surgery for CHD, particularly in neonates, but it can also occur in the setting of progressive heart failure. Goal-directed treatment including assessment of mixed SvO₂, can guide intervention and improve end-organ function and clinical outcome. It is important to rule out residual anatomic lesions or coronary insufficiency as the cause of postoperative LCOS. (See section on Low Cardiac Output Syndrome).

Pulmonary and Airway Complications. Inadequate ventilation and oxygenation can be caused by parenchymal lung disease, mainstem intubation, pneumothorax, hemothorax, chylothorax, or significant pleural effusion. If untreated, particularly in neonates with compromised myocardial function, inadequate oxygenation and ventilation can lead to bradycardia and cardiac arrest. On-unit chest radiograph with immediate viewing is optimal, and arterial blood gas analysis will complement bedside assessment of airway and ventilation.

In neonates and infants, paralysis of the diaphragm from inadvertent phrenic nerve injury during cardiac surgery can prevent weaning from positive-pressure ventilation. Although eventual recovery of function should be anticipated, intervention with surgical plication of the diaphragm might be needed to facilitate successful extubation. Injury to the recurrent laryngeal nerve and paresis of a vocal cord can compromise the ability to protect the airway and clear pulmonary secretions.

Pulmonary Hypertension. Pulmonary hypertensive crises arise from an acute increase in PVR and PAPs resulting in RV distension and dysfunction, which compromises LV filling and contractility and systemic cardiac output. Pulmonary hypertensive crises are difficult to reverse; thus, it is critical to prevent such crises in at-risk patients.

For patients with known PAH, it is important to understand the underlying RV function; presence or absence of an atrial, ventricular, or aortic level shunt; and known reactivity to oxygen or iNO. In addition to common triggers of hypoxia and acidosis, postoperative pulmonary hypertensive crises can be associated with inflammation (eg, lung injury, surgical trauma, post cardiopulmonary bypass), and they can also be triggered by fever, infection, pain, anxiety, tracheal suctioning, dehydration, or rebound when reducing or discontinuing pulmonary vasodilators. Preemptive treatment with iNO, sedation/analgesia, and neuromuscular blockade may be indicated for some high-risk PAH patients.

The goals of therapy to reduce the risk of pulmonary hypertensive crises include reducing triggering stimuli (ie, avoid and correct hypoxia and acidosis); administering sedation, analgesia, and neuromuscular blockade and minimizing stimulation and pain; and reducing RV afterload through the administration of inhaled pulmonary vasodilators (eg, nitric oxide). Although acute hyperventilation is effective in lowering PVR, use of iNO is as effective as hyperventilation without its potentially undesirable systemic effects, including detrimental effects on cerebral blood flow. During a crisis, administration of systemic vasoconstrictors can also be considered. For further information, see Pulmonary Arterial Hypertension.

Precautions in the Step-Down Unit/Ward
Cardiac patients are typically transferred from the ICU when it is determined that they have reached a point of stability where they are less likely to have acute hemodynamic or respiratory compromise or cardiac arrest. No universally accepted criteria are available to determine when a patient is ready to move from the ICU to a step-down unit or ward. Routine postoperative patient criteria might include recovery from postoperative myocardial dysfunction (as evidenced by adequate perfusion after discontinuation of inotropic support), effective airway and ventilation without an oral or nasotracheal tube, and a stable cardiac rhythm. The interinstitutional strategies for management of cardiac patients in the nonintensive care environment are highly variable and determined by local expertise, healthcare provider experience, and other factors such as the hospital physical structure and bed space availability.

Monitoring on the step-down unit/ward is generally noninvasive and might include routine vital signs (measurement of temperature, heart rate, respiratory rate, and noninvasive blood pressure), as well as pulse oximetry and continuous ECG monitoring. Patients transferred to the step-down unit/ward should be considered sufficiently low-risk so that these strategies can reliably identify perturbations in cardiopulmonary status. An early warning score designed specifically for and validated in hospitalized children with heart disease is now available.

Home Monitoring
Although discharge from the hospital typically occurs when patients are at low risk for cardiac and respiratory events and have an established nutrition regimen,
some patients with CHD, especially infants with single-ventricle anatomy and shunt-dependent PBF, remain at risk for acute deterioration as a result of the intrinsic inefficiencies of the parallel circulation. For newborns after the stage 1 Norwood palliation, the reported incidence of interstage mortality (ie, death between discharge after the stage 1 Norwood and admission for superior CPA) is often as high as the hospital mortality after the stage 1 Norwood palliation itself, particularly if the infant was palliated with an MBTS.\(^9\)\(^,\)\(^20\)\(^,\)\(^26\)

Relatively minor illnesses can result in elevation of SVR or hypovolemia with an increase in Qp:Qs and decreased systemic perfusion and DO\(_2\) to the tissues. In addition, there is the potential for a decrease in PBF attributable to neointimal proliferation in the systemic-to–pulmonary artery shunt or increased somatic growth rendering the shunt relatively smaller and physiologically insufficient.

In single-center studies, close monitoring of patients, particularly those with HLHS, in the home setting has been associated with reduced mortality before creation of the superior CPA.\(^537\)\(^–\)\(^541\) These programs provided families with the following supplies and guidance: (1) pulse oximeter to monitor Sa\(_O_2\) and identify worsening cyanosis (this might identify a shunt problem) or increased saturations (which might identify an early state of increased SVR); (2) a scale to determine daily weights to identify problems with growth, as well as evidence of acute dehydration; (3) a mechanism to record dietary intake; and (4) guidelines regarding contacting the referral center when vital signs are outside strict parameters. In these programs, patients not meeting guidelines were generally evaluated within 24 hours. In addition, parents were typically contacted weekly to review data. To further assess the impact of home monitoring on single-ventricle HLHS interstage mortality, the multicenter National Pediatric Cardiology Quality Improvement Collaborative (NPC-QIC) adopted a home monitoring quality improvement project involving 52 pediatric cardiac surgical centers and 1163 interstage infants between 2008 and 2014. Assessment of baseline interstage monitoring of HLHS infants performed at the participating NPC-QIC sites revealed significant variation nationally.\(^542\) The key drivers that were deemed necessary to achieve a reduction in interstage mortality included engaging the parents, improving care transitions at stage 1 Norwood discharge, optimizing growth, and improving coordination among the care team and families.\(^11\) Multiple change strategies or activities in these areas were recommended for centers participating in the collaborative, including caregiver preparation during the Norwood hospitalization; providing caregivers with a red flag action plan; establishing collaboration between the family, primary physician, cardiologist, and other team members; activities related to assessment and optimization of feeding and weight gain; standardization of assessments and action plans at clinic visits; and home monitoring during the interstage period of oxygen saturation and weight gain. Cumulative aggregate mortality between 2008 and May 2013 in NPC-QIC centers was 9.5%, lower than published previously in single-center studies.\(^11\)

From June 2013 to August 2014, cumulative aggregate mortality was 5.3%, a relative reduction of 44%.\(^11\)

Although a recent study\(^543\) analyzing NPC-QIC data from 2008 to 2012 did not find any association between home oxygen saturation or weight monitoring with either mortality or readmission, these data should be assessed with the following notable caveats. The analysis did not examine trends over time. Using statistical process control methodology, examination of interstage mortality rates over time within the NPC-QIC revealed no change in mortality rates initially (during the time period of the study by Oster et al\(^544\)) but trends toward decreasing mortality within the collaborative more recently, beginning in 2013.\(^11\) Additionally, home monitoring was just 1 component of the overall efforts supported by the NPC-QIC (and individual institutions that have adopted these methods) and was intertwined with numerous other activities related to engaging families and the care team, as well as coordination and standardization of care. In addition, the group with no home monitoring (36 patients in the group with no oxygen saturation monitoring) was very small, which limited the study's power and raised issues regarding generalizability, because this group reflected outcomes at no more than a handful of centers.

Gaps in Knowledge.

The existing published data regarding standard monitoring and staffing in the pediatric ICU are limited to surveys. Criteria to enable comparisons among units are difficult to establish because there is significant interinstitutional practice pattern variation. Similarly, limited quantitative data exists pertaining to pediatric cardiac ICU complications.

Children with complex CHD, particularly neonates, have a high risk of early and late postoperative morbidity and mortality. Evidence-based best practices to avoid and successfully manage these events have not yet been identified.

Recommendations: Location-Specific Arrest Prevention and Response Measures

1. Increased nursing experience can be effective to improve outcomes for pediatric patients after congenital heart surgery (Class IIa; Level of Evidence B).
2. Rapid access to or in-unit blood gas, radiograph, echocardiogram, and ECLS can be beneficial to optimize patient outcome (Class IIa; Level of Evidence C).
Cardiac Arrest Phase

Onset

Pediatric cardiac arrest in general is most often asphyxial/ischemic rather than arrhythmic, and it is typically associated with progression of shock or respiratory failure. In a review of in-hospital cardiac arrest from the GWGTG-R Registry, ~60% of the children with cardiac arrest were already receiving mechanical ventilation and nearly 40% were receiving vasopressors at the time of arrest. Data from the same registry revealed that nearly all cardiac surgical patients who had cardiac arrest had continuous ECG monitoring and vascular access in place at the time of arrest, 74% were receiving mechanical ventilation, and 60% were receiving vasoactive infusions.

Cardiac arrest is 10 times more likely among children with CHD compared to critically ill children with noncardiac medical or surgical problems. In the most recent data from the AHA GWGTG-R Registry from 2000 to 2008, precipitating factors of cardiac arrest included hypotension or hypoperfusion (eg, LCOS or vasodilatory shock), arrhythmias, and acute respiratory insufficiency. If low cardiac output is refractory to maximal medical management, institution of ECLS should be considered before cardiac arrest occurs. Unless cardiac arrest is precipitated by a sudden arrhythmia, inadequate Do2 is likely to be present even before the arrest, adding to the ischemic insult of the arrest itself. Management of these children focuses on support of airway, ventilation, and perfusion to prevent the arrest.

When cardiac arrest develops, immediate provision of high-quality CPR is required. Simultaneously, providers must search for reversible or treatable causes of arrest, such as LCOS, cardiac tamponade, closure of a ductus arteriosus, acute pulmonary hypertensive crisis, or acute occlusion of a systemic-to-pulmonary artery shunt or a conduit. If modification of medications (eg, vasoactive drugs, prostaglandins), inspired oxygen concentration, iNO, or mechanical ventilation support preceded the arrest, providers must evaluate the effect of the modification on cardiac output.

Bradycardia often precedes pediatric cardiac arrest and is typically caused by hypoxia or hypotension. The heart rate threshold for initiation of chest compression varies with the clinical scenario and the child's baseline heart rate. For the monitored child with bradycardia and pulses, the decision to initiate chest compressions requires consideration of blood pressure, heart rate, and timely access to medications, as well as consideration of the risk (in the early postoperative period) of compressions. For the seriously ill child, a heart rate of <60 beats per minute with signs of poor perfusion despite adequate ventilation with oxygen is a reasonable threshold indication for initiation of chest compressions (with ventilation). Initiation of chest compressions with ventilation before development of cardiac arrest might explain the better survival (40.7%) reported from the National Registry of CPR among 1353 children who received CPR for in-hospital bradycardia with pulses and poor perfusion compared with the 24.5% survival rate among 1489 children who received CPR only after development of asystole/pulseless electrical activity cardiac arrest. The combination of chest compressions with the patient's intrinsic cardiac output can maintain critical blood flow and assist delivery of life-saving medications.

The most common terminal rhythm in pediatric cardiac arrest is brady-asystole, and asystole and pulseless electrical activity were the most common terminal rhythms in children with both surgical and medical cardiac disease. Prompt initiation of high-quality CPR with administration of oxygen is essential to restore effective Do2, and limit the ischemic insult.

In the GWTG-R Registry, children with surgical or medical cardiac disease were much more likely than children with no cardiac disease to demonstrate VF or pulseless VT as a terminal rhythm of cardiac arrest. VF or pulseless VT (see Arrhythmias section) should raise suspicion of myocardial ischemia, or in the specific example of torsade de pointes, should raise suspicion of LQTS, either congenital or acquired. In such patients, prompt recognition of the degenerating rhythm and provision of high-quality CPR with rapid defibrillation are of utmost importance. (See Cardioversion and Defibrillation During Resuscitation.)

Gaps in Knowledge

Cardiac arrest in children with cardiac disease can be somewhat categorized by situation, although the primary cause of the arrest may be unknown. More data are needed regarding specific alterations (if any) that may be necessary in basic or advanced life support to improve survival of pediatric patients with CHD, open sternum, long QT, fulminant myocarditis, pulmonary hypertension, arrhythmia, and postoperative complications, particularly LCOS and respiratory insufficiency.

Recommendations: Cardiac Arrest Phase – Onset

1. For children with asystole or pulseless electrical activity, prompt initiation of high-quality CPR is essential, and providers must search
for and treat any reversible causes (Class I; Level of Evidence C).

2. For children with VF or pulseless VT, high-quality CPR and prompt defibrillation are indicated (Class I; Level of Evidence B).

Cardiopulmonary Resuscitation
Cardiac Arrest and CPR
CPR provided to a patient with a structurally normal heart delivers ≈10% to 30% of normal blood flow to the heart and 30% to 40% of normal blood flow to the brain.6,546,547 As a result, high-quality CPR is vital to the success of any resuscitation attempt,6 to maintain blood flow and D02. There are no data to support modification of the AHA-recommended pediatric CPR skills for children with CHD, although unique aspects of the child’s anatomy and condition in the early postoperative period (eg, open sternum, fresh sutures lines, anterior conduit) could compromise the effectiveness of chest compressions. Appropriate rescuer hand position is critical to create blood flow during compressions. In addition, the components of high-quality CPR recommended by the AHA are also required to optimize blood flow: adequate compression rate, adequate compression depth, allowing full chest recoil after each compression, minimizing interruptions in compressions, and avoiding excessive ventilation.84

The 2-finger compression technique is used for the single rescuer of the newborn or infant; the 2 fingers compress the lower third of the sternum in the newborn and just below the intermammary line in the infant.546,548 The preferred compression technique for 2-rescuer CPR for newborns and infants is the 2-thumb, encircling hands technique, with thumbs together compressing the lower third of the sternum and the fingers encircling the infant’s thorax. This compression technique provides better coronary artery perfusion pressure and results in improved depth of compression, and it can generate higher aortic systolic and diastolic pressures than the 2-finger technique.549,550 For children, rescuers should use the heel of 1 or 2 hands to compress over the lower half of the sternum, avoiding the xyphoid.546

A compression rate of at least 100 per minute was recommended in the 2010 AHA pediatric basic life support guidelines.546 A recent study of adult out-of-hospital resuscitation suggested that the optimum compression rate might be 100 to 120 per minute,551 and this range of compression rate has been endorsed in the 2013 AHA “Cardiopulmonary Resuscitation Quality” article6 and recommended in the 2015 pediatric basic life support guidelines update.84 There is no evidence to identify an optimum compression rate for infants and children, but in the absence of direct information, a compression rate of 100 to 120 per minute is reasonable for infants and children.

Compressions are thought to generate blood flow during resuscitation by compressing the heart between the sternum and vertebral column (so-called cardiac pump mechanism) and by creating intrathoracic-to-extrathoracic pressure gradients (the so-called thoracic pump mechanism); both mechanisms have been demonstrated during CPR using echocardiography in adult patients,552–554 although comparable pediatric clinical data have not been published.

Recommendations for chest compression depth and technique vary with the size of the infant and child. All compressions in infants and children (beyond the newborn period) should be to a depth of at least one-third the depth of the chest. This depth of compression will correspond to a depth of ≈1.5 inches (4 cm) in infants beyond the newborn period and ≈2 inches (5 cm) in children.546,555 Once the child has signs of puberty, the adult compression depth of at least 2 inches (5 cm) but no more than 2.4 inches (6 cm) can be used. It is important to allow for full chest recoil after each compression, so the heart can refill with blood.556,557 Incomplete recoil occurs when the rescuer leans on the chest and fails to allow the chest to reexpand after each compression. Leaning is more likely if the rescuer is fatigued and can be minimized by lifting the fingers or hand(s) between compressions. Inadequate recoil maintains high intrathoracic and right atrial pressure, so it will reduce coronary perfusion pressure (aortic end-diastolic pressure minus right atrial pressure), blood flow through the heart, venous return to the heart, and blood flow generated by the next compression. Although there are no human data linking inadequate recoil with reduced survival, in data from a piglet model,558 a pediatric model,559 and hemodynamic studies,566 inadequate recoil reduced coronary and cerebral perfusion pressure, cardiac output/index, and LV myocardial blood flow.

Minimizing interruptions to compressions is vital to a successful resuscitation.557,566 Strategies to minimize interruptions include using the recommended compression to ventilation ratio (15 to 2 for infants and children with ≥2 rescuers when no advanced airway is in place, and once an advanced airway is in place, continuous chest compressions with asynchronous breaths at a rate of 10 breaths per minute) and minimizing interruptions for airway placement, rhythm checks, shocks, and ECLS cannulation.6 The 2013 AHA CPR quality statement recommends compressions be performed at a minimum of 60% with a target of 80% of the total resuscitation time for patients of all ages.6

Excessive ventilation during resuscitation can be harmful and should be avoided. Positive-pressure ventilation increases intrathoracic pressure and impedes venous return. During CPR with an advanced airway in place, as noted above, compressions are delivered continuously at a rate of 100 to 120 per minute, and...
ventilation is delivered asynchronously (with an attempt to deliver breaths between compressions) at a rate of 10 breaths per minute (or 1 breath every 6 seconds).

Special Considerations for the Delivery Room
There are important differences between priorities for resuscitation of premature newborns with lung disease and priorities for resuscitation of newborns with CHD. For the newborn with the structurally normal heart, the most common reason for resuscitation is respiratory failure, so establishment of an adequate airway and ventilation with oxygen are priorities. In the unlikely event that compressions are required, a total of 90 compressions and 30 breaths (120 events) are delivered each minute, ensuring adequate balance of cardiac output and ventilation.548

For the newborn with a prenatal diagnosis of CHD, resuscitation in the delivery room is planned to target immediate problems created by the heart lesion. Lesions likely to cause inadequate oxygenation and ventilation include severe forms of TOF with absent pulmonary valve, and Ebstein anomaly of the tricuspid valve. Patients with mitral atresia and an intact atrial septum will present with immediate hemodynamic instability. Patients with TGA and an intact atrial septum will be profoundly cyanotic and hypoxemic. The latter 2 lesions will require transcatheter or surgical intervention for stabilization; in the absence of a prenatal diagnosis and preplanned intervention, survival is poor. Newborns with obstructed TAPVC or TGA with restrictive atrial septum will likely require mechanical ventilation and hemodynamic support, rapid diagnosis (if not already known), and prompt intervention but are unlikely to require CPR. In general, newborns with a prenatal diagnosis of ductal-dependent heart disease will be stable in the delivery room with initiation of low-dose PGE1 infusion (0.01 μg·kg−1·min−1).

Special Considerations for the Immediate Postoperative Patient
The vast majority of patients after cardiac surgery will have an arterial and a CVP catheter with continuous waveform display that will enable immediate assessment of the effectiveness of compressions and any need for modifications in resuscitation techniques or therapies. Use of hemodynamic monitoring to optimize resuscitation technique enables estimation of coronary perfusion pressure (aortic relaxation/diastolic pressure–right atrial pressure/CVP) and tailoring of type of compression, location, and depth to optimize coronary perfusion pressure.

Both the cardiac pump and thoracic pump mechanisms can be compromised in the patient with CHD. The cardiac pump mechanism can be compromised by the presence of an anterior conduit through decreased direct compression of the RV body. In the setting of severe valvar insufficiency, there can be decreased PBF or SBF with each chest compression. PBF can be limited in the presence of an MBTS or during a pulmonary hypertensive crisis.

It is important to develop a resuscitation strategy for each postoperative patient before an arrest occurs. This strategy includes optimal hand position for chest compressions and planned cannulation site for ECLS. Although major thoracic and myocardial injuries are rare in CPR-treated pediatric and adult patients, occurring in 3% and 7% of those undergoing CPR, respectively, the immediate postoperative period after sternotomy and cardiotomy in the pediatric patient may carry greater risk. Although there are no data assessing the absolute risk from direct chest compressions after pediatric cardiac surgery, teams resuscitating children with cardiac disease should note the potential risk of myocardial or thoracic injury, bleeding, or dehiscence of intracardiac repairs.561,562 In patients with an open sternum, external chest compressions are generally less effective than open-chest cardiac massage.

Although open-chest (direct) cardiac massage is frequently performed in infants and children with open sternums, there are no data on which to base recommendations regarding technique. Direct cardiac massage should ideally be undertaken with oversight of the surgical team. A sterile field must be maintained. Compressions of the ventricle or ventricles should avoid suture lines and be gentle to avoid unnecessary direct damage to the myocardium. An arterial pressure monitor will document the effectiveness of compressions during open-chest massage.565

Monitoring During CPR
The child’s arterial pressure waveform provides useful feedback about the adequacy of compressions and chest recoil. The waveform not only provides the systolic (compression) and diastolic (relaxation) pressures, but the width of the waveform enables assessment of the stroke volume. In a study of adult patients during CPR, a coronary perfusion pressure of at least 15 mm Hg was required for ROSC, and survival increased if the coronary perfusion pressure was >20 mm Hg.563 In adults, the 2013 CPR quality statement recommends maintaining the aortic diastolic pressure (between compressions) above 25 mm Hg and targeting a coronary perfusion pressure >20 mm Hg. There is insufficient evidence to recommend coronary perfusion pressure goals for infants and children, although expert consensus is that it is reasonable to attempt to maintain the coronary perfusion pressure above 20 mm Hg.5 Early data in adults have shown that higher saturations by NIRS monitoring during CPR are associated with increased likelihood of ROSC.564,565

In patients with a structurally normal heart, continuous waveform capnography monitoring of ETCO2 can provide useful information about PBF and hence
the effectiveness of chest compressions. In those patients, if the $ETCO_2$ remains low (eg, ≤10–15 mm Hg), it is reasonable for providers to attempt to optimize CPR technique to improve the $ETCO_2$. In patients with shunt-dependent PBF or significant pulmonary insufficiency, $ETCO_2$ might underestimate systemic cardiac output, so establishment of target threshold $ETCO_2$ is challenging. There are insufficient data to use the $ETCO_2$ as a prognostic indicator in infants and children.4

Cardioversion and Defibrillation During Resuscitation

Children with CHD frequently require cardioversion for acute treatment of arrhythmias, most commonly atrial flutter or atrial fibrillation. They might also require defibrillation for treatment of VF or pulseless VT. Cardioversion or defibrillation can be performed on patients with internal pacemakers and patients on ECLS.

Sedation for Cardioversion. In the prearrest setting, adequate sedation and analgesia can be achieved with short-acting intravenous agents. Because the child with CHD may be more sensitive to the vasodilatory effects of these drugs, dose adjustment may be required. Performing cardioversion with the assistance of anesthesiologist or intensivist results in the safest experience for the child; however, when cardiovascular collapse is present or imminent, cardioversion can be performed without sedation or analgesia.

Pad Position and Size. The general techniques for cardioversion and defibrillation in children with CHD do not differ from general recommendations for these procedures in infants and children without CHD.4 Handheld paddles or self-adhesive pads can be used. Anterior-posterior or anterior-lateral pad position may be appropriate; providers should follow the defibrillator manufacturer’s recommendations. If the child has dextrocardia, defibrillator pads should be placed over the right side of the chest to keep the heart between the defibrillation pads. If the child's chest is small, placing the pads in the anterior posterior position will prevent overlap. No difference in cardioversion success has been reported with various pad positions.415 For patients with an open sternum, paddle and pad positions may need to be modified, or internal paddles can be used under sterile conditions.

Energy Doses for Cardioversion and Defibrillation.

Rapid direct-current cardioversion or defibrillation is indicated for tachyarrhythmia (eg, cardioversion for atrial flutter or atrial fibrillation; defibrillation for VF or pulseless VT) that results in hemodynamic instability (eg, hypotension, acutely altered mental status, signs of shock). The energy must be delivered to the myocardium, and placement of the pads may need to be modified in special circumstances, such as for patients with an implanted pacemaker or dextrocardia. For cardioversion of SVT or VT/wide-complex tachycardia with a pulse, an initial energy dose of 0.5 to 1 J/kg can be effective. This low-dose shock is delivered in a synchronized mode to avoid precipitating VF. If the initial cardioversion dose is not effective, the dose is increased to 2 J/kg and again delivered in a synchronized mode.

For VF/pulseless VT, an initial dose of 2 to 4 J/kg is acceptable, although for ease of teaching, a dose of 2 J/kg can be considered. For subsequent doses, it is reasonable to use 4 J/kg, and higher doses can be considered, although the dose should not exceed 10 J/kg.4 In the setting of an open sternum and internal paddles, the adult dose for defibrillation is 10 to 20 J.415,566 and 0.6 to 0.7 J/kg in children.

Integration of Attempted Defibrillation With CPR.

Analysis of CPR process recordings from 815 adult out-of-hospital resuscitations in the Resuscitation Outcomes Consortium cardiac arrest registry documented a strong relationship between short preshock and perishock pauses and shock success, including survival to hospital discharge. The preshock pause is the interval between the last chest compression and shock delivery. The perishock pause is the sum of the preshock pause and the interval between shock delivery and the next (postshock) chest compression. Adult patients with preshock pauses of 20 seconds or longer and those with perishock pauses of 40 seconds or longer were approximately half as likely to survive to hospital discharge as patients who had shorter pauses. Survival fell by ≈18% for every 5-second increase in preshock pause and by ≈14% for every 5-second increase in perishock pause.567 Shortening these pauses by even 5 seconds was associated with substantial improvement in survival. Although this study has not been replicated in pediatric patients, it is likely that the effect of prolonged pauses in compressions is detrimental to survival in children. In animal models, VF increases myocardial oxygen consumption by 70%.568 Animals allowed to fibrillate for 10 minutes were more likely to have ROSC if they received CPR (with or without epinephrine) before defibrillation compared with those who received an immediate shock.569 CPR increased the amplitude of fibrillation and was associated with more successful defibrillation. In the fibrillating heart, CPR improves myocardial creatine phosphate levels, reflecting an improved cardiac energy state.568 The improved amplitude of fibrillation during CPR is likely related to an improved cardiac energy state, in part attributable to improved myocardial DO_2; the improved energy state just before shock delivery is likely to improve shock success. To minimize preshock and perishock pauses, the resuscitation team must carefully integrate high-quality CPR and shock delivery. This requires practice, and analysis of these pauses should be part of the monitoring of resuscitation quality and postresuscitation debriefing.
Pacing

Several clinical trials have examined the role of transcutaneous cardiac pacing for out-of-hospital resuscitation for children and adults with bradycardia/asystole. Sherbino et al. reviewed the experience of 34 of these trials in a meta-analysis of the literature. To date, no study has shown improved outcomes of cardiac arrest in response to pacing; however, no study specifically examined pacing in the resuscitation of patients with CHD. For patients with a perfusing rhythm and symptomatic heart block or sinus node dysfunction, pacing is indicated (see Arrhythmias section).

Intubation and Airway Management

During the early postoperative period, an advanced airway is often in place. If the child in cardiac arrest has no invasive airway in place, the decision to intubate and the timing of intubation must be considered carefully. Initially, effective ventilation can be accomplished with bag and mask. For a patient with difficult mask ventilation, placement of an oral airway, placement of the endotracheal tube in the nasopharyngeal space with a closed mouth, or placement of a laryngeal mask airway can permit assisted ventilation and oxygenation without tracheal intubation. Placement of a gastric tube to decompress the stomach should be considered both to facilitate ventilation and to reduce the risk of regurgitation, and the tube can be left in place during laryngoscopy. If effective oxygenation and ventilation cannot be achieved, insertion of an advanced airway is indicated. Endotracheal intubation in infants and children requires special training and ongoing experience, and special expertise is required for intubation during CPR to minimize interruptions in chest compressions (see Principles of Intubation, Airway Management, and Respiratory Support). In children with no intracardiac or great vessel shunt, changes in PETCO₂ during CPR can be a direct indication of changes in PBF and cardiac output.

Vascular Access

There are no published data to suggest that the AHA PALS vascular access guidelines should be modified for children with heart disease who require resuscitation. Administration of resuscitation drugs through an invasive route, whether central or peripheral, should be considered. A long central venous catheter can contribute to increased resistance to rapid fluid or drug administration. For patients with a perfusing rhythm and symptomatic heart block or sinus node dysfunction, pacing is indicated (see Arrhythmias section).

Intubation and Airway Management

During the early postoperative period, an advanced airway is often in place. If the child in cardiac arrest has no invasive airway in place, the decision to intubate and the timing of intubation must be considered carefully. Initially, effective ventilation can be accomplished with bag and mask. For a patient with difficult mask ventilation, placement of an oral airway, placement of the endotracheal tube in the nasopharyngeal space with a closed mouth, or placement of a laryngeal mask airway can permit assisted ventilation and oxygenation without tracheal intubation. Placement of a gastric tube to decompress the stomach should be considered both to facilitate ventilation and to reduce the risk of regurgitation, and the tube can be left in place during laryngoscopy. If effective oxygenation and ventilation cannot be achieved, insertion of an advanced airway is indicated. Endotracheal intubation in infants and children requires special training and ongoing experience, and special expertise is required for intubation during CPR to minimize interruptions in chest compressions (see Principles of Intubation, Airway Management, and Respiratory Support). In children with no intracardiac or great vessel shunt, changes in PETCO₂ during CPR can be a direct indication of changes in PBF and cardiac output.

Vascular Access

There are no published data to suggest that the AHA PALS vascular access guidelines should be modified for children with heart disease who require resuscitation. Administration of resuscitation drugs through an invasive route, whether central or peripheral, should be considered. A long central venous catheter can contribute to increased resistance to rapid fluid or drug administration. For patients with a perfusing rhythm and symptomatic heart block or sinus node dysfunction, pacing is indicated (see Arrhythmias section).

For shock-refractory VF/pulseless VT, intravenous epinephrine can be administered (0.01 mg/kg, or 0.1 mL of the 0.1 mg/mL concentration; maximum 1 mg) every 3 to 5 minutes. For recurrent VF/pulseless VT in the absence of LQTS, either amiodarone (5 mg/kg IV/IO bolus up to a maximum dose of 15 mg/kg) or lidocaine (1 mg/kg) can be administered. The recommendations for the use of amiodarone are extrapolated from adult studies of prehospital VF/pulseless VT cardiac arrest that showed increased survival to hospital admission but not to hospital discharge and a report of the use of amiodarone in the treatment of life-threatening (but nonarrest) ventricular arrhythmias in children. In a multivariate analysis of data from the GWTG-R Registry, among pediatric patients with in-hospital cardiac arrest associated with VF/pulseless VT, use of lidocaine was associated with increased ROSC and 24-hour survival, whereas amiodarone was not. Neither drug was associated with improved survival to hospital discharge. On the basis of these reports, lidocaine can be considered in the setting of VF/pulseless VT in children with congenital or acquired heart disease. (See Arrhythmias section.)
Gaps in Knowledge
There are few published data regarding effective CPR techniques in the patient with CHD, and even less information about CPR in the immediate postoperative period. Should CPR be unsuccessful, strategies for ECLS are currently institutionally developed and take into account the availability of the surgical and ECMO teams. In addition, the impact of hemodynamic monitoring on outcomes from CPR in infants and children with CHD is not well documented.

Variability in patient habitus and pad/paddle positions and contact, as well as variability in underlying cardiac anatomy and function among pediatric patients who develop cardiac arrest, creates challenges in determining optimal energy doses for cardioversion and defibrillation. The data regarding management and outcome of VF/pulseless VT arrests in adults with coronary artery disease cannot be applied directly to infants and children with CHD. Research regarding the management of pediatric postoperative VF/pulseless VT is needed.

There are few data regarding indications for pacing during CPR in children with cardiac disease. In addition, there is no published evidence to modify the PALS recommendations regarding priorities for inserting an advanced airway or establishing vascular access in patients with congenital and acquired heart disease who do not have these devices in place when cardiac arrest develops.

Recommendations: Cardiac Arrest Phase – CPR

1. In general, AHA recommendations for pediatric CPR skills can be effective for children with CHD (Class Ila; Level of Evidence C).
2. If hemodynamic monitoring (particularly arterial and CVP monitoring) is in place during CPR, it is reasonable to use these values to modify and optimize CPR technique (Class Ila; Level of Evidence C).
3. Conventional high-quality CPR (closed chest compressions and positive-pressure ventilation) must be provided when the child with CHD develops cardiopulmonary arrest, but CPR may be less effective in the presence of single-ventricle physiology (shunt, superior CPA, or Fontan), severe valvar insufficiency, or pulmonary hypertensive crisis. Until there is sufficient evidence to support specific alternative recommendations for CPR technique to improve survival in these populations, it is reasonable to use the conventional CPR technique (Class Iib; Level of Evidence C).
4. It is reasonable to consider deployment of ECLS before cardiac arrest and in the early minutes of resuscitation (Class Ila; Level of Evidence B).
5. Arterial blood pressure and ET CO2 should be monitored when possible to provide feedback regarding quality of chest compression technique and other aspects of resuscitation (Class I; Level of Evidence C).
6. For cardioversion of SVT or VT with pulses, an initial dose of 0.5 to 1 J/kg is recommended. Subsequent doses of 2 J/kg may be used (Class I; Level of Evidence C).
7. For defibrillation for VF/pulseless VT, an initial dose of 2 to 4 J/kg is reasonable (Class Ila; Level of Evidence C). For subsequent shocks, a dose of 4 J/kg is reasonable, and higher doses may be considered, although they should not exceed 10 J/kg (Class Ila; Level of Evidence C).
8. For defibrillation for VF/pulseless VT in the setting of an open sternum and internal paddles, the dose is 0.6 to 0.7 J/kg in children (Class Ila; Level of Evidence B).
9. The resuscitation team should integrate high-quality CPR and shock delivery to minimize pauses in CPR associated with defibrillation (Class I; Level of Evidence B).
10. For patients who develop bradycardia during CPR, there is no evidence that pacing will improve ROSC. Pacing may be considered but should not interrupt chest compressions. Appropriate sensing is important to avoid inducing VF (Class Iib; Level of Evidence C).
11. Central venous access, if available, is the recommended route of vascular access for medication administration and potential hemodynamic monitoring (Class 1; Level of Evidence C).
12. In the absence of central venous access, vascular access via peripheral intravenous catheter can be useful for administration of medications if it can be established rapidly (Class Ila; Level of Evidence C).
13. Intraosseous access is rapid, safe, effective, and useful as the initial route of vascular access in pediatric cardiac arrest (Class I; Level of Evidence C).

Mechanical Support

ECLS and ECPR
ECLS (also known as ECMO) is increasingly used in adults and children for treatment of in-hospital cardiac arrest refractory to initial high-quality CPR. 75,76,583–586 When ECLS is deployed during cardiac arrest, it is referred to as ECPR. In observational studies with propensity analyses of adult patients in refractory cardiac arrest, the use of ECPR has been shown to improve...
both survival and favorable neurological outcomes compared with conventional CPR. Similarly, in a pediatric analysis from the AHA GWTG-R Registry, the use of ECPR was associated with higher acute resuscitation survival but lower postresuscitation survival than conventional CPR. In addition, the use of ECPR was not associated with overall survival to discharge.17 Until recently, data regarding the association between ECPR and survival of children with heart disease after cardiac arrest was limited to case series.588 However, in a multivariate analysis of factors associated with survival from cardiac arrest among children with both medical and surgical heart disease, the AHA GWTG-R Registry data demonstrated improved survival with the use of ECPR.5 A recent study from the GWTG-R showed that for children with in-hospital CPR of ≥ 10 minutes’ duration, ECPR was associated with improved survival to hospital discharge and survival with favorable neurological outcome compared with conventional CPR.589

For children with heart disease, ECPR is most commonly used to support those who have cardiac arrest in the postoperative period after congenital heart surgery,8,75,590–593 and less commonly in the setting of acquired heart disease (eg, acute fulminant myocarditis, cardiomyopathy, or refractory arrhythmias). No differences in survival between unoperated versus postoperative patients or between single versus 2-ventricle congenital heart defects have been observed.8,591 In some observational studies, infants and children with acute fulminant myocarditis resuscitated with ECLS after cardiac arrest have been shown to have good outcomes.260,594

Prearrest Factors. Prearrest factors that predict mortality in children supported with ECLS have been evaluated in many observational studies.8,586,591,593 The severity of prearrest metabolic acidosis based on arterial blood pH and lactic acidosis has been shown to be associated with both mortality and neurological injury; however, the timing of laboratory measurements (prearrest versus immediate postarrest) varies considerably in these studies.

Duration of CPR Before ECLS. Prolonged duration of CPR before ECLS can increase the risk of mortality and neurological injury in ECPR patients8,75,586,588,595,596; however, the duration of CPR has not consistently been shown to be a risk factor for mortality and cannot be used exclusively to guide patient selection for ECPR. Survival with good neurological outcome has been documented in some patients receiving >60 minutes of CPR before ECLS deployment.75

ECPR Deployment Location. ECPR is currently deployed in many areas of the hospital, with locations varying widely based on institutional policies. Common areas for provision of ECLS include ICUs, emergency departments, inpatient wards, and operating rooms.8,597,598

One study showed improved survival for patients placed on ECP in the catheterization laboratory and ICU compared with other areas.8 ECPR outcomes can be improved by restricting ECLS cannulation to areas where equipment required for ECLS deployment during cardiac arrest can be accessed easily and personnel skilled at providing high-quality CPR and managing ECLS are readily available.

There is some evidence that centers with higher ECPR volumes achieve better survival than low-volume centers. Several studies have demonstrated that mortality is lower in pediatric cardiac ECLS patients treated in higher-volume centers (>15–22 patients per year).599–601 As a result, it is reasonable to refer complex patients at high risk of cardiac arrest to centers with established, high-volume ECPR programs.

The use of ECPR for out-of-hospital cardiac arrest in adults was associated with better survival with favorable neurological outcomes at 6 months in one study (11.2% versus 2.6%, \textit{P} = 0.001602); however, the proportion of witnessed arrests was high (>90%), and bystander CPR was performed in >70% of cases. Survival rates were higher in those with VT/VF than in those with nonshockable rhythms.602 Many more data are required before the indications for and utility of ECMO can be determined in patients who have an out-of-hospital arrest and arrive at the hospital still receiving CPR. Extreme caution must be exercised before extrapolating these data and deploying ECPR for out-of-hospital cardiac arrest to children, because the causes are usually different.

Vessels Used for ECLS Cannulation. ECLS cannulation strategies for use during CPR based on cardiac anatomy are shown in Table 5. Venous sites commonly used for ECLS cannulation include the internal jugular vein, femoral vein, and right atrium. Common arterial cannulation sites include the carotid artery, femoral artery, and ascending aorta. In children cannulated for ECLS after recent cardiac surgery, the right atrium and aorta are commonly used, because these sites can be accessed rapidly through the sternotomy incision. One study showed that use of neck vessels for ECLS cannulation was associated with better survival591 a result that can be explained by fewer interruptions in CPR when the neck veins are used. However, another analysis of the Extracorporeal Life Support Organization (ELSO) Registry did find an association between increased neurological complications and carotid artery cannulation.603 Although there is no published information regarding femoral vessel cannulation and ECPR outcomes, it is possible that femoral vessel cannulation for ECPR in older children might also require fewer interruptions of CPR, resulting in better outcomes.

ECLS Circuitry and Management. ECLS circuit components such as the pump, tubing, and oxygenator vary widely among ECLS centers, but there is no information...
as to whether these components influence outcomes for ECPR patients. Most centers use crystalloid primed circuits for ECPR deployment. One study has shown that the use of blood prime increased mortality in ECPR patients. Generally, heparin 100 U/kg is administered at the time of ECLS cannulation. ECLS circuit management strategies are affected by the patients’ underlying disease and vary among ECLS centers.

ECLS Team and Training issues

ECPR teams should be readily available for deployment at the discretion of the institution. The composition of the ECPR team varies by institution, and there is no evidence to suggest that the type of ECPR team available influences survival. Pediatric ECPR teams should include specialists to manage resuscitation, to cannulate, and to prime and deploy ECLS. Seamless teamwork and communication is essential for successful and safe ECLS deployment. ECLS team training using medical simulation can help maintain teamwork and the procedural expertise required for safe ECPR deployment. In one preintervention and postintervention study at a single institution, ECLS simulation training resulted in subjective reports of smoother team coordination and significant reduction in median time to deployment (from 51 to 40 minutes) during actual pediatric ECPR.

ECLS Complications and Outcomes

Complications related to ECLS often limit survival in children. Neurological complications are common after ECPR and occur in at least 20% of ECPR patients. Neurological complications can result from prearrest illness, the quality of CPR provided before and during ECLS deployment, or as a complication of ECLS itself. As noted above, an analysis of multicenter data from the ELSO database documented an association of decreased mortality with cannulation of the right carotid artery compared with aortic cannulation; however, another analysis of the ELSO Registry did find an association between increased neurological complications and carotid artery cannulation. There is no published evidence to support or refute the effectiveness of therapeutic hypothermia after ECPR.

Survival after ECPR

Survival after ECPR is higher in children with cardiac disease than in those with noncardiac disease. Hospital survival from ECLS in the cardiac ICU is reported at 34% to 45%, with in-hospital survival from ECPR being 33% to 79%, although transplantation may be required for survival. Although duration of CPR before ECLS has not consistently been shown to be associated with greater hospital mortality, the rapidity with which ECLS can be deployed could impact neurological outcomes.

Mechanical Support of Single-Ventricle CHD After Cardiac Arrest

After Stage 1 Norwood Palliation

Although ECLS is rarely necessary for preoperative stabilization in infants with single-ventricle heart disease, it is increasingly being used to support children with single-ventricle CHD after palliative surgery. The use of ECLS after stage 1 Norwood palliation is reported at 10% to 15%. The Single Ventricle Reconstruction Trial reported the incidence of cardiac arrest during the postoperative stage 1 Norwood palliation hospitalization at 13%, and it was more likely to occur in those with an MBTS. Because of the difficulty attaining ROSC after cardiac arrest, half of these stage 1 Norwood patients required ECPR.

In the Single Ventricle Reconstruction Trial, the need for ECLS was independent of the type of shunt. From 2000 to 2009, 738 neonates in the ELSO Registry were supported with ECLS after stage 1 Norwood pallia-

Table 5. Cannulation Strategies for ECPR*

<table>
<thead>
<tr>
<th>Physiology</th>
<th>Peripheral Cannulation</th>
<th>Central Cannulation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Venous</td>
<td>Arterial</td>
<td>Venous</td>
</tr>
<tr>
<td>Biventricular circulation</td>
<td>Internal jugular or femoral</td>
<td>Common carotid or femoral</td>
<td>Systemic venous atrium</td>
</tr>
<tr>
<td>Single ventricle or shunted physiology</td>
<td>Internal jugular</td>
<td>Common carotid</td>
<td>Systemic venous or common atrium</td>
</tr>
<tr>
<td>Superior cavopulmonary anastomosis</td>
<td>Internal jugular and/or femoral</td>
<td>Common carotid</td>
<td>SVC and/or systemic venous or common atrium</td>
</tr>
<tr>
<td>Fontan</td>
<td>Internal jugular and/or femoral</td>
<td>Common carotid or femoral</td>
<td>Fontan baffle</td>
</tr>
</tbody>
</table>

ECPR indicates extracorporeal life support to support failed cardiopulmonary resuscitation; MBTS, modified Blalock-Taussig shunt; and SVC, superior vena cava.

*General principles for efficient use of extracorporeal life support (ECLS) to support cardiopulmonary resuscitation include the following: (1) Venoarterial ECLS should be used in all cases. (2) Knowledge of venous anatomy and previously occluded vessels is critical for successful and timely deployment of ECLS. (3) Central (transthoracic) cannulation may be considered in patients who have undergone a recent sternotomy. (4) Peripheral (percutaneous) cannulation may be preferred for patients without recent sternotomy. (5) ECLS cannulas should be large enough to provide complete cardiac output (cardiac index >2.5 L·min⁻¹·m⁻²). If extracorporeal membrane oxygenation flow is limited by inadequate venous drainage, secondary drainage sites should be considered.
tion, with a survival rate of 31%. Other single-center and multicenter studies have reported survival rates of 30% to 50%. The presence of acute shunt occlusion or hypoxemia in patients requiring ECLS has been associated with better survival to discharge, whereas failure to separate from cardiopulmonary bypass at the end of a surgical procedure or the use of ECLS within 24 hours of stage 1 Norwood palliation has been associated with worse outcome. Not unexpectedly, longer duration of support has been associated with poor survival; the ELSO Registry reported no survivors after 10 days of ECLS (2000–2009). Survival from ECLS after stage 1 Norwood palliation at a median of 33 months is 25% to 30%, with no difference found between patients requiring ECPR versus conventional CPR. Fourteen-month neurodevelopmental evaluation of patients undergoing the stage 1 Norwood palliation in the Single Ventricle Reconstruction Trial found the use of ECLS to be a risk factor for lower mental developmental index scores on univariate analysis but not by multivariate analysis. Similar follow-up in the Infant Single Ventricle Trial found the use of ECLS after neonatal palliative surgery predicted lower mental developmental index scores.

Worse outcomes have been reported after ECLS for the hybrid procedure for HLHS. In a retrospective analysis of data from the ELSO Registry, 44 patients were supported with ECLS after the hybrid procedure, and only 16% survived to hospital discharge. The use of ECLS after superior CPA and the Fontan completion poses unique anatomic, technical, and physiological challenges, but published experience is limited. In a single-center case series of patients receiving ECPR, 7 of 14 patients with Fontan physiology survived to discharge, with 36% alive at 36-month follow-up compared with survival of only 1 of 7 patients with superior CPA; the lone survivor was noted to have significant neurological disability. Given the high risk of neurological injury, it may be reasonable to consider deployment of ECLS early in the attempted resuscitation in patients with a superior CPA.

The use of ECLS after superior CPA and the Fontan completion is reasonable to initiate ECPR early in the attempted resuscitation in patients with a superior CPA.

Evidence for the use of mechanical support in patients with single-ventricle physiology is based on single institutional reports, the ELSO Registry, and the Single Ventricle Reconstruction Trial. Little information exists on the conduct of ECLS in single-ventricle patients, including shunt management during ECLS after stage 1 Norwood palliation and choice of ECLS cannulation site for support in patients with superior CPA and Fontan. There are limited data on long-term neurodevelopmental outcome and quality of life in survivors of ECLS after stage 1 Norwood palliation. Data are needed regarding indications for use, devices most appropriate for patient subgroups, and outcomes of therapies.

Recommendations: Mechanical Support

1. ECLS may be considered in patients with severe metabolic acidosis before cardiac arrest (Class IIb; Level of Evidence C).
2. If cardiac arrest develops in the child with heart disease and there is no prompt ROSC, it is reasonable to initiate ECPR (Class IIa; Level of Evidence C).
3. In institutions with the requisite resources, equipment, and infrastructure, ECPR can be effective to improve survival in children with heart disease (Class IIa; Level of Evidence B).
4. ECPR can be most effectively deployed in locations with rapid access to ECLS equipment, skilled ECLS personnel, and adequate space to accommodate a large team (Class IIa; Level of Evidence C).

5. ECLS after stage 1 Norwood palliation can be useful to treat low systemic DO₂ (Class IIa; Level of Evidence C).

6. ECPR may be considered to treat cardiac arrest after stage 1 Norwood palliation, including in those who have shunt thrombosis (Class IIb; Level of Evidence B).

7. ECLS in patients with superior CPA or Fontan circulation can be considered to treat low DO₂ from reversible causes or as a bridge to a VAD or surgical revision (Class IIb; Level of Evidence B).

8. ECPR may be considered in patients with superior CPA or Fontan circulation (Class IIb; Level of Evidence C); however, prearrest use of ECLS in patients with superior CPA or Fontan physiology may be reasonable, because neurological outcomes from ECPR are poor (Class IIb; Level of Evidence C).

Special Considerations

Impact of Resuscitation Location

In-hospital pediatric cardiac arrests occur most frequently in ICUs. Patients with cardiac arrest requiring CPR in monitored environments have higher survival than those who experience arrest outside ICUs.517 No studies have directly assessed the impact of location on resuscitation outcomes in patients with CHD. From the GWTG-R Registry, 24-hour survival rates from 677 pediatric in-hospital cardiac arrests occurring in various hospital locations were as follows: ICU, 54%; inpatient ward, 52%; emergency department, 26%; operating room or recovery room, 26%; interventional or diagnostic suites, 35%; and other (eg, ambulatory), 43%. Although this study did not separate survival by arrest location for patients with cardiac disease, patients having a medical cardiac diagnosis had lower 24-hour survival rates than those having a surgical cardiac diagnosis (47% versus 59%; P<0.05).618 In a more recent GWTG-R Registry multivariate analysis comparing outcomes of cardiac arrest in children with medical and surgical cardiac disease to those of children without cardiac disease, cardiac arrest in the emergency department rather than the ICU was associated with decreased survival among children in the medical cardiac group.5 There are insufficient data to support transporting patients during active CPR into a monitored environment such as an ICU to improve survival.

Cardiac arrest associated with VF or pulseless VT was examined in another study from the GWTG-R Registry.619 In the vast majority of patients (76%), VF or pulseless VT occurred in ICUs (including operating rooms and postanesthesia care units). Other locations where VF/pulseless VT occurred less frequently included inpatient wards (10%), emergency department (10%), and inpatient-monitored units (3%). Patients with cardiac diagnoses constituted 57% of those experiencing VF/pulseless VT (medical cardiac patients 22% and surgical cardiac patients 35%). Of patients with non-VF/VT cardiac arrest, there were relatively fewer patients having cardiac diagnoses (32%) compared with patients with noncardiac diagnoses (68%). Cardiac arrests associated with VT/pulseless VT are more likely to occur in patients with cardiac diagnoses.

Personnel and ICU factors have been shown to influence survival from cardiac arrest, with an increased risk of unsuccessful resuscitation after cardiac arrest on a weekend and when the primary nurse had <1 year of experience in pediatric cardiac intensive care.492

Cardiac Catheterization Laboratory. Cardiac arrest in the cardiac catheterization laboratory is relatively uncommon. In one report from the United Kingdom, the incidence of cardiac arrest was 0.5% (22 of 4454 patients) with 4 ensuing deaths (0.01% mortality rate among all catheterized patients; 19% mortality rate among those with cardiac arrest) over a 9-year period.619 Another study from Canada reported 14 cardiac arrests in 11,073 pediatric catheterizations (0.1%) that resulted in 8 deaths (0.07% mortality rate among all catheterized patients, but 57% rate mortality among those with cardiac arrest) over a 13-year period. A single US center report estimated the incidence of cardiac arrest in children undergoing cardiac catheterization to be 0.96 per 100 procedures.620

More recently, multicenter surveys and registries have reported more widespread experience. In Japan, a survey of 82 institutions found a 0.6% incidence of major complications, including death.621 A US registry involving 6 large pediatric cardiology centers reported a mortality rate of 0.3% (11 of 3385 children) during cardiac catheterization.622 Risk factors for major complications during cardiac catheterization, including cardiac arrest and death, in all studies included specific patient characteristics, younger age (ie, neonates), anesthesia provider, and recent postoperative status.619,623

Cardiac Operating Room. In a single-center study, the reported incidence of cardiac arrest in the cardiac operating room was 0.79%.432 This incidence is low compared with the occurrence of cardiac arrest in other locations. Cardiac arrest in children undergoing cardiac surgery can be related to anesthesia or to the procedure itself and is most common in neonates and infants.432
Gaps in Knowledge

There are limited reported data on outcomes based on location of cannulation for mechanical support in patients with CHD.

Recommendations: Impact of Resuscitation Location

1. The vast majority of cardiac arrests should occur in ICUs. A cardiac arrest occurring on a ward service or in a nonacute area of the hospital should prompt investigation to determine whether the child’s deterioration was unrecognized and to identify and initiate the appropriate education to reduce the risk of future events (Class I; Level of Evidence C).

Training and Continuous Quality Improvement

Multiple studies have documented poor performance of CPR in the hospital setting and decay of provider skills soon after CPR training. Recent studies have shown that brief (as short as 4 minutes) refresher or booster training can improve CPR manikin skill performance. “Just-in-time” simulation at the bedside in the ICU serves to heighten awareness of providers for patients at risk of cardiac arrest. It is important to determine whether such improvement in skill performance leads to improved survival after cardiac arrest.

After any attempted resuscitation, providers should debrief team performance to identify areas for improvement. Devices such as defibrillators or accelerometers that record important aspects of CPR quality, including chest compression frequency and depth, compression fraction, and ventilation rate and volume, can be helpful during resuscitation training, during the resuscitation attempt itself, and later in the debriefing and quality improvement process. Data from the GWTG-R Registry, self-reported errors during resuscitation of adults, such as delay in recognition of arrest, delay in shock delivery, delay in airway insertion, intubation failure, and failure to promptly start and continue compressions of adequate rate, were associated with lower survival. The use of medical simulation, video recordings, and other visual feedback devices have been shown in randomized trials to improve the quality of CPR in children. ECLS programs incorporating simulation training have been associated with faster cannulation times, improved trainee satisfaction, enhanced provider knowledge, and better team performance. In one preintervention and postintervention study at a single institution, ECLS simulation training resulted in subjective reports of smoother team coordination and significant reduction in median time to deployment (from 51 to 40 minutes) during actual pediatric ECPR.

Gaps in Knowledge

CPR quality is essential to maximize patient survival from cardiac arrest, yet there are few data to guide quality improvement efforts. The optimal retraining interval and the types of retraining needed to maintain CPR skills have not been established, but it is clear that providers must practice skills much more frequently than once per year to optimize CPR quality and team performance and to increase survival from cardiac arrest. Although CPR prompt devices can improve skill performance during training, their usefulness during actual resuscitation attempts and their effect on resuscitation outcomes (particularly survival to hospital discharge) have not yet been established.

Recommendations: Training and Continuous Quality Improvement

1. Adequate training, an ongoing system to maintain skill competence, monitoring of skills during resuscitation, postresuscitation debriefing, and careful identification and targeting of areas where improvement is needed can be useful to maximize the likelihood of successful resuscitation (Class Ila; Level of Evidence C).

2. Monitoring performance and documenting improvement can be useful to resuscitation systems attempting to improve their resuscitation quality (Class Ila; Level of Evidence C).

3. Using medical simulation to train clinicians in both conventional CPR and ECPR can be beneficial (Class Ila; Level of Evidence C).

POST–CARDIAC ARREST STABILIZATION

Most research in resuscitation science has concentrated on improving the rate of successful ROSC; however, the original 1966 consensus statement on CPR by the National Academy of Sciences–National Research Council’s Ad Hoc Committee on Cardiopulmonary Resuscitation outlined the ABCDs of resuscitation as follows: A for airway; B, breathing; C, circulation; and D, definitive therapy. Definitive therapy includes the management of pathologies that result from cardiac arrest, which has become known as postarrest syndrome. The 4 components of post–cardiac arrest syndrome are myocardial dysfunction, brain injury, systemic ischemia/reperfusion response, and persistent precipitating pathology.

The high mortality of patients who initially achieve ROSC after cardiac arrest can often be attributed to failure of organ systems that have endured a period of ischemia, as well as the damage caused by the postisch-
emic inflammatory response. The response to the arrest ischemia can be exacerbated by the very therapies instituted for resuscitation. For example, post–cardiac arrest myocardial dysfunction can be worsened by epinephrine use during resuscitation or by inotropic therapies aimed at maintaining renal perfusion. In addition, potential reperfusion brain injury can be made worse by therapies aimed at myocardial support.413,642,643

Myocardial Management

Myocardial Dysfunction
Myocardial dysfunction develops after cardiac arrest and contributes to mortality.644 This dysfunction is responsive to therapies and is potentially exacerbated by therapies; it is, in some cases, reversible.645–649 Myocardial dysfunction can be more detrimental to the child with CHD, because the child has limited prearrest reserve. Systolic and diastolic myocardial dysfunction is progressive in the first hour that follows ROSC.644 In young children, this dysfunction can be correlated to myocyte injury and typically reverses over 24 hours.645,650

Major contributors to post–cardiac arrest myocardial dysfunction include myocardial ischemia-reperfusion injury and the therapies, particularly vasopressors, used during CPR. Vasopressor agents are administered during CPR to improve coronary perfusion pressure and therefore myocardial blood flow. Restoration of coronary perfusion is the single overriding determinant of the success of cardiac resuscitation efforts.644 However, epinephrine leads to high afterload and increased myocardial oxygen consumption in the initial post–cardiac arrest phase at the time when the myocardium is most vulnerable to increased oxygen demands and imbalance of oxygen supply versus delivery.413,652 This concern for increasing myocardial work at a time of myocardial vulnerability has led to the evaluation of alternative vasoactive agents such as vasopressin and other agents in resuscitation.653,654

Myocardial Support
Hemodynamic instability is common after cardiac arrest, and pharmacological support is often needed. No individual drug or combination of drugs has been demonstrated to be superior in the postarrest phase. Inotropes and vasopressors should be considered if cardiovascular function remains inadequate after establishment of adequate preload. Vasoactive drugs must be titrated to achieve adequate cardiac output and systemic and coronary perfusion. This can require a balance of inotropic agents that will increase cardiac output as well as oxygen demand and vasodilators that reduce afterload and decrease myocyte oxygen consumption, while avoiding hypotension that will compromise coronary perfusion. The choice of inotrope or vasopressor can be guided by blood pressure, heart rate, echocardiographic indices, and surrogate measures of DO₂ such as AVO₂D, lactate clearance, and urine output. Mechanical circulatory support and heart transplantation can be considered for patients who do not achieve myocardial recovery.8,608

Hemodynamic Monitoring
Recommended hemodynamic monitoring in the post–cardiac arrest patient is similar to that used for the care of any child with critical cardiac disease and includes continuous monitoring of heart rate and blood pressure (systolic, diastolic, and mean arterial pressure) and evaluation of arterial and central SvO₂ and serum lactate. However, the precise hemodynamic goals are unclear. The optimal mean arterial pressure for post–cardiac arrest patients has not been defined.640 Although particular attention may need to be paid to afterload during management of post–cardiac arrest myocardial dysfunction, the optimal mean arterial pressure is likely to be influenced by the duration of cardiac arrest, with higher mean arterial pressures benefitting cerebral perfusion.655

Monitoring of SvO₂ is a useful tool to evaluate the adequacy of oxygen transport balance.449 SvO₂ monitoring can serve as an early indicator of a persistent postarrest LCOS. A single lactate measurement after resuscitation from cardiac arrest will most likely be elevated and is of limited monitoring or prognostic value. However, trending of the serum lactate will provide an important indication of the child’s response to therapy; lactate clearance has been associated with outcome in patients after cardiac arrest.656 Finally, monitoring troponin peak and clearance has also been associated with outcome after adult cardiac arrest.650

Ventricular Assist Devices
The use of an LVAD, a right VAD, or a biventricular VAD in the management of infants and children has increased recently secondary to wider device availability and a broader understanding of the potential role of these devices in the setting of myocardial dysfunction and heart failure. Many centers have historically used ECLS as a bridge to cardiac transplantation; however, ECLS has limitations regarding the duration of support and potentially unfavorable effects on transplant outcomes. The use of VADs offers different strategies, which can be of significant benefit to postarrest survivors. These include bridge to transplantation, bridge to recovery, and rarely in pediatrics, destination therapy.657 Bridge to transplantation remains the most common use of VAD therapy and should be considered in patients who are clinically deteriorating despite maximal medical and surgical management.

The use of VAD support in children can be further complicated by anatomic constraints in the setting of CHD, which may necessitate individualized implantation strategies and postoperative management.658 No
universally accepted pediatric indications exist for VAD implantation, although the International Society for Heart and Lung Transplantation has recently published clinical guidelines.257 Pediatric VAD placement can be considered in patients requiring high-dose inotropes after cardiac arrest, those with persistent arrhythmias, or those with persistent myocardial dysfunction on ECLS. The figure delineates mechanical circulatory support strategies in rapidly deteriorating children with heart disease.

Bridge to transplantation is the most common VAD implant strategy in pediatric centers. There are a variety of flow profiles available for current devices, including pulsatile flow and continuous flow devices. The most widely used device in children is the Berlin EXCOR device, which is a pulsatile paracorporeal VAD that can provide left, right, or biventricular support.238 The recent Berlin EXCOR study comparing survival in 2 cohorts, patients <0.7 m² and patients >0.7 m² to <1.5 m², to historical ECLS results found that survival rates to transplantation were much higher in those supported with VAD.660 Both cohorts experienced significant morbidity, however, with the majority of patients experiencing significant bleeding, infection, stroke, or hypertension. On the basis of the improved survival to transplantation, the Berlin EXCOR device was granted US Food and Drug Administration approval in 2011.

For patients with adequate lung function not requiring a membrane oxygenator, a VAD can be used as a bridge to transplantation regardless of patient size. Adult devices can be used in adolescent patients. The HeartMate II LVAD (Thoratec, Inc., Pleasanton, CA) is an axial continuous flow device currently approved for bridge to transplantation. This device is increasingly used in children, with a reported rate of 6-month survival to transplantation, ongoing support, or recovery of 95%.661 The HeartMate II has also been successfully used as a bridge to transplantation in the failing Fontan circulation.662 The HeartWare LVAD (HeartWare Inc., Framingham, MA) is a newer-generation centrifugal device also approved for bridge to transplantation in the United States. Successful use of the HeartWare device has been reported in pediatric patients with dilated cardiomyopathy and in palliated CHD with successful bridge to cardiac transplantation.663,664

Consideration of temporary VAD support should be given to patients who have a potentially reversible condition such as myocarditis or transplant rejection. In addition, temporary VAD support can be used in clinical situations such as patients with infection or cerebrovascular injury that may preclude permanent VAD placement or consideration of heart transplantation, until the patient’s candidacy can be established or ruled out. Temporary support can be provided centrally or percutaneously based on anatomy, size, and type of support needed. Potential recovery of myocardial function should be assessed periodically during VAD support, and decannulation should be considered at the earliest period when functional viability is thought to be established.

For those patients with biventricular heart failure, support might be possible with either biventricular VAD

Figure. Mechanical circulatory support device strategy in rapidly deteriorating children with heart disease.4,8,35,81,144,271–276,283,298,302,312,325–327,331,386,650,659 Choice of ventricular assist device (VAD) depends on patient size and need for left ventricular or biventricular support. Examples of temporary VADs include centrifugal pump extracorporeal life support (ECLS) without oxygenator, Impella, and Tandem Heart. Examples of durable VADs include Berlin Heart EXCOR, Thoratec paracorporeal VAD, HeartMate, HeartWare, and total artificial heart/SynCardia. CPR indicates cardiopulmonary resuscitation; and VA ECLS, venoarterial ECLS.
Gaps in Knowledge
There are few data available that specifically relate to the support of the pediatric myocardium after resuscitation. There are no universally accepted indications for pediatric VAD implantation. There are no universally accepted strategies for anticoagulation to minimize the risk of stroke during VAD therapy. Individual centers typically follow local protocols or the recommendations of the VAD manufacturer.

Recommendations: Post–Cardiac Arrest Stabilization – Myocardial Management

1. Vasoprotective drugs can be beneficial to augment coronary perfusion pressure during myocardial recovery but may also contribute to myocardial oxygen consumption and post–cardiac arrest myocardial dysfunction. Therefore, careful titration of vasoprotective drugs can be beneficial to minimize post–cardiac arrest myocardial dysfunction (Class Ila, Level of Evidence C).

2. Post–cardiac arrest hemodynamic monitoring should include continuous monitoring of heart rate and rhythm; systolic, diastolic and mean arterial pressure; arterial and venous oxygen saturations; and serum lactate clearance (Class I; Level of Evidence B).

3. Mechanical circulatory support may be considered for some patients who do not achieve ROSC and adequate perfusion (Class IIb, Level of Evidence C).

4. In survivors of cardiac arrest who require mechanical circulatory support while awaiting cardiac transplantation, the use of VAD can be more effective than ECLS (Class Ila; Level of Evidence B).

Pulmonary Management
Provision of effective oxygenation and ventilation via a bag-mask or through an advanced airway is imperative during resuscitation. Many patients undergo establishment of an advanced airway with placement of an endotracheal tube; however, positive-pressure ventilation can have both helpful and harmful effects on postarrest cardiopulmonary and cerebral physiology.

Pulmonary Dysfunction
Pulmonary dysfunction is common after cardiac arrest. This dysfunction can result from pulmonary edema secondary to postischemic diastolic dysfunction, aspiration, neurological impairment of respiratory dynamics, or ischemia-reperfusion injury to the lung parenchyma. Each of these potential pulmonary morbidities must be treated effectively to achieve long-term survival after resuscitation.

Respiratory Support
The optimal ventilatory management strategy, including the optimal supplementary oxygen to provide during post–cardiac arrest care, has not been established. Existing guidelines recommend the use of 100% oxygen during CPR in infants (not including newborns in the delivery room) and children; however, it is not clear how long this high oxygen concentration should be administered after ROSC. Harmful effects of hyperoxia have been documented; animal data suggest that hyperoxia increases direct neurological injury during the post–cardiac arrest time period. An adult randomized prospective clinical trial comparing the use of 30% to 100% oxygen found no difference in serial markers of acute brain injury and survival to hospital discharge. Three small pediatric case series failed to show either benefit or harm from post-ROSC normoxemia or hyperoxemia, whereas a larger pediatric case series did show higher survival among children with post-ROSC normoxemia (PaO₂ 60–300 mm Hg) than those with post-ROSC hyperoxemia. However, the timing of the evaluation of oxygen saturation and arterial oxygen tension during the post–cardiac arrest care varied between and even within the studies. These data led to the 2015 PALS guideline update recommendation that once the patient is stable in the post–cardiac arrest period, it may be reasonable for providers to target normoxemia Ideally, inspired oxygen is titrated to a value appropriate to the specific patient condition.

Ventilation strategies during post–cardiac arrest care can potentially have a greater impact on outcome than strategies to support oxygenation, because the arterial carbon dioxide tension affects cerebrovascular reactivity. Hyperventilation is undesirable because it reduces cerebral blood flow and can have other detrimental effects during resuscitation. Excessive ventilation (rate or volume) during and immediately after CPR can lead to increased intrathoracic pressure and gas trapping, as well as reduced venous return and cardiac output. One small observational study from the Pediatric Emergency Care Medicine Applied Research Network of both pediatric in-hospital and out-of-hospital cardiac arrest patients demonstrated no association between hypercapnia (Paco₂ >50 mm Hg) or hypocapnia (Paco₂ <30 mm Hg) and survival to hospital discharge. However, in an observational study from the Pediatric Cardiac Arrest Study Network of pediatric in-hospital cardiac arrest, hypercapnia (Paco₂ ≥50 mm Hg) was associated with worse survival to hospital discharge. Because many infants who experience cardiac arrest have co-
morbidities that may include chronic lung disease, the AHA 2015 PALS guideline update suggested titration of post–cardiac arrest ventilation support to target a PaO\textsubscript{2} that is appropriate to the individual child’s condition while limiting exposure to severe hypercapnia or hypocapnia.3

Respiratory Monitoring
Respiratory monitoring during post–cardiac arrest care should follow standard ICU practice for any critically ill patient. Chest radiographs should be reviewed at an appropriate frequency to assess lung fields and detect hyperexpansion that could lead to decreased venous return, as outlined above. Similarly, monitoring of arterial blood gases and systemic oxygen saturations should be aimed at maintaining normocarbia (or a PaO\textsubscript{2} appropriate for the patient) and avoiding hypoxemia and hyperoxia.

Gaps in Knowledge
There are no prospective data in children regarding optimal oxygenation or ventilation support during post–cardiac arrest care. Developmental differences in lung physiology after cardiac arrest in children have not been studied.

Recommendations: Post–Cardiac Arrest Stabilization – Pulmonary Management

1. It is reasonable to target normal oxygen saturation without hyperoxia after resuscitation from pediatric cardiac arrest; oxygen administration may need to be modified in newborns or based on the underlying heart defect (Class Ila; Level of Evidence B).

2. It is reasonable to target normocapnia or a PaCO\textsubscript{2} appropriate for each patient after resuscitation from pediatric cardiac arrest (Class Ila; Level of Evidence C).

Neurological Assessment and Management
Brain ischemia and injury develop when the cellular demand for oxygen is not met by D\textsubscript{O}\textsubscript{2}. D\textsubscript{O}\textsubscript{2} is proportional to cerebral blood flow and systemic oxygen saturations. D\textsubscript{O}\textsubscript{2} falls when respiratory insufficiency results in poor arterial oxygen saturation, when low cardiac output leads to inadequate cerebral blood flow, or when cardiac arrest leads to global ischemia. There is no clinical, laboratory, or neurological test administered in the first few days after cardiac arrest that accurately predicts neurological outcome in children who have survived cardiac arrest. Brain magnetic resonance imaging (MRI) with other clinical, laboratory, and neurological tests can be considered to assist in neuroprognostication.

Brain Imaging
For those patients who undergo post–cardiac arrest brain imaging, head CT is often the first neuroimaging test performed early after ROSC. It may show cerebral swelling with effacement of the sulci, widespread loss of grey-white differentiation, or low density in the basal ganglia or in the watershed regions. The “reversal sign,” with low density in the cerebral hemispheres and relatively higher densities in the basal ganglia, is not uncommon on head CT. All these patterns are associated with poor prognosis, but a normal CT scan does not guarantee a good outcome. A recent retrospective analysis of 78 pediatric patients (<18 years of age) with out-of-hospital cardiac arrest for any reason and a head CT performed 1 to 6 hours after ROSC found that loss of grey-white differentiation, sulcal effacement, basilar cistern effacement, and reversal sign on head CT performed early after resuscitation were associated with mortality and unfavorable neurological outcome.

For neonates and infants with open anterior fontanel, the first imaging modality can be a head ultrasound, which is portable and requires no ionizing radiation. Head ultrasound offers a limited view of brain anatomy but can quickly aid in the diagnosis of problems that require emergent attention, such as intracranial hemorrhage and hydrocephalus. Transcranial Doppler ultrasonography, used to measure cerebral blood flow velocities and pulsatility index, can be performed in conjunction with head ultrasound. Like head ultrasound, transcranial Doppler is a noninvasive bedside procedure; however, continuous transcranial Doppler measurements in small infants can be limited by heat deposition. Transcranial Doppler studies have been used to monitor metabolic coupling and vascular reactivity in comatose adults after cardiac arrest. Furthermore, transcranial Doppler is capable of measuring the macroscopic cerebral hyperemic reperfusion caused by the increase of the cerebral perfusion pressure and deterioration of cerebral autoregulation after ROSC. After ROSC, the presence of a closing pressure, or pressure at which brain vessels collapse and cerebral blood flow ceases, is a grim prognostic finding in adults after cardiac arrest.

Brain MRI can be used in survivors of cardiac arrest to assess the extent of brain injury and in combination with clinical examination and other factors to assist in determining prognosis for neurological recovery. Patterns of injury have been detailed and used in studies to help understand cognitive and motor prognosis. Patterns of injury are not specific for the mechanism of arrest (respiratory versus cardiac), because the injury results from metabolic failure in the most metabolically active areas of the brain. With hypoxic-ischemic arrest, the areas of the brain most commonly affected are the deep grey nuclei (putamen and globus pallidus), the occipital lobe (visual cortex), and the central sulcus (sensory motor...
Neurological Monitoring

Major goals of post–cardiac arrest care are mitigating the extension of the primary ischemic brain injury and prevention of secondary brain injury. Intensive care monitoring is focused on calculation of DO₂ and cerebral consumption, which may or may not be reflective of cerebral hemodynamics and metabolism. Clinical neurological examination is often hindered by the use of medications (sedatives, analgesics, and paralytics) or limited by the patient’s age (eg, in the infant). Medical devices to monitor brain function and cerebral blood flow are needed both for goal-directed therapy and to enable prediction of outcome.

Electroencephalography

Electroencephalography has been used to identify seizures that may not be clinically apparent. Identifying and treating seizures in post–cardiac arrest patients can reduce cerebral metabolic demand and mitigate secondary injury. However, seizures can be a symptom (as opposed to the cause) of the degree of injury that is already present.686–688

A prospective consecutive series of 19 pediatric, postarrest, intensive care patients monitored with continuous electroencephalography689 demonstrated that electrographic seizures occurred in 47% (9 of 19), and 32% (6 of 19) developed status epilepticus. More importantly, the majority of the seizures were subclinical and undetected by the bedside caregivers. Other retrospective studies have documented a similar high incidence of nonconvulsive seizures.690–696 Clinical studies are consistent with the hypothesis that continuous electrographic discharges, even without clinical seizures, can be harmful. The presence of nonconvulsive status epilepticus has been associated with mortality of 51% to 57% in adults.697,698

A recent practice parameter addressing outcome prediction in adults after cardiac arrest described several electroencephalography features that were useful for prognosis.699 Myoclonic status epilepticus on the first day best predicted unfavorable outcome, whereas diffuse voltage suppression <20 μV, burst suppression, and generalized periodic complexes were strongly but not invariably associated with poor outcome. Several classification systems that group electroencephalography features into predictive categories have been developed in adults700–702 and children.703,704 Caution must be taken when interpreting these data, because it could be that the more critically ill children had the worst electroencephalography and hence the worst outcome.

Near-Infrared Spectroscopy

Unlike pulse oximetry, NIRS measurements made in cerebral tissues reflect a weighted average of venule (=75%) and arteriole (=25%) blood saturations705 in very metabolically active tissue. Meticulously performed animal studies have demonstrated that an ischemic threshold can be measured in piglets,706 although for obvious ethical reasons, such studies not been replicated in humans. In a porcine model of infant cardiac arrest, NIRS monitoring was used to detect the lower limit of cerebral hemodynamic autoregulation.707

NIRS offers bedside availability and the promise of a noninvasive view of cerebral oxygenation. Commercially available instruments are not capable of quantitative measurements of hemoglobin concentrations, are sensitive to ambient light, and suffer from poor reproducibility. Although NIRS technology does monitor in vivo tissue oxygen saturations and is increasingly used in pediatric ICUs, there is a paucity of data linking it to positive neurological outcomes.

Several studies have used NIRS to investigate risk for perioperative brain injury in infants with complex CHD.347–354,356,517; however, the results have been contradictory. Two studies in infants after stage 1 Norwood palliation found that cerebral oxygen saturations below 45% were predictive of structural brain injury and worse neurodevelopmental outcome,48,517 whereas a third study of neonates with single-ventricle and 2-ventricle complex CHD showed no association between NIRS saturations <45% and any measure of any postoperative MRI brain injury.347 After stage 1 Norwood palliation, sustained NIRS <45% has been shown to be related to low visual-motor integration, and sustained NIRS <55% has been shown to be associated with lower neurodevelopmental index scores at 4 to 5 years of age.48 Despite these conflicting results, some advocate the use of neuroprotective protocols, driven by NIRS measures, for managing intraoperative and postoperative patients with severe forms of CHD.347

Neurological Resuscitation

Resuscitation from cardiac arrest does not end after ROSC. Post–cardiac arrest care has significant potential to prevent the early mortality caused by hemodynamic instability and prevent secondary injury at the cellular level. The objectives of resuscitation include optimiza-
tion of cardiopulmonary function and systemic perfusion, identification of the precipitating causes of the arrest, institution of measures to prevent recurrence of cardiac arrest, administration of therapies that might facilitate long-term survival, and above all, protection of cognitive and neurological function.

Hyperoxia
The pediatric basic and advanced life support section of the 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations suggested that rescuers measure \(Pao_2 \) after ROSC and target a value appropriate to the specific patient condition. In the absence of specific patient data, this consensus statement suggests that rescuers target normoxemia after ROSC. \(^{398} \) The Iberoamerican Pediatric Cardiac Arrest Study Network, in a prospective multicenter study, concluded that there was no impact of hyperoxia on mortality but did not address neurological outcomes. \(^{671,672} \) Two meta-analyses (the first in 2004, with an update in 2010) noted an association between hyperoxia in the resuscitation of neonates and an increased risk of death (relative risk, 0.69; 95% confidence interval, 0.54–0.88), with a trend toward increased risk for hypoxic-ischemic encephalopathy. \(^{708,709} \) No studies exist for infants outside of the newborn period.

Hypercapnia
Carbon dioxide is a potent cerebral vasodilator and thus a potential therapeutic tool to increase \(D_O_2 \) to the brain after ROSC. Although the Iberoamerican study showed that both hypercapnia and hypocapnia were associated with increased mortality, \(^{672} \) there are not sufficient data to determine whether manipulation of cerebral blood flow can affect outcome after circulatory arrest. As noted previously, the AHA 2015 PALS guideline update suggested titration of post–cardiac arrest ventilation support to target a \(Paco_2 \) that is appropriate to the individual child’s condition while limiting exposure to severe hypercapnia or hypocapnia. \(^{3} \)

Targeted Temperature Management

Importance of Controlling Fever
Fever (>38°C) on the first day after reperfusion from cardiac arrest in children is a common consequence of the postresuscitation syndrome and can be detrimental to outcomes. \(^{541,710,711} \) Of the 547 children who experienced in-hospital cardiac arrest in the GWTG-R Registry, children with persistent fever in the first 24 hours postarrest had more unfavorable neurological outcomes than children without persistent fever. \(^{712,713} \) Additionally, in a subset of newborns with birth asphyxia (with or without associated cardiac arrest) from the National Institute of Child Health and Human Development Neonatal Research Network, the odds of death or disability increased by 3.6-fold for each 1°C increase in mean temperature. \(^{212} \) This association persisted at the 6- to 7-year follow-up of noncooled infants with birth asphyxia: the likelihood of death, IQ <70, or cerebral palsy was much higher among newborns who demonstrated elevated temperature in the first postnatal days. \(^{214} \)

Consideration of Therapeutic Hypothermia After Pediatric Cardiac Arrest
Initial randomized clinical trials showed that therapeutic hypothermia (32°C to 34°C) can improve neurological outcome in some adults after witnessed out-of-hospital cardiac arrest attributable to ventricular arrhythmia \(^{715,716} \) and in encephalopathic asphyxiated newborns. \(^{362,717} \) However, a recent adult randomized controlled trial of targeted temperature management showed no difference in neurological outcomes and survival in adults with out-of-hospital cardiac arrest when temperature was controlled at 33°C versus 36°C.

In 2015, the results of the THAPCA trial (Therapeutic Hypothermia After Out-of-Hospital Pediatric Cardiac Arrest) were published. This trial enrolled infants and children <18 years of age (median age 2 years) who remained comatose at 6 hours after ROSC. Patients were randomized to therapy with hypothermia (32°C–34°C for 72 hours with 16-hour rewarming and 32 hours of normothermia) versus therapeutic normothermia (temperature actively maintained at 36°C–37.5°C for 5 days). Significant differences between the 2 treatment groups included a higher incidence of hypokalemia and thrombocytopenia in the hypothermia group and more frequent renal replacement therapy in the normothermia group. There was no significant difference in 1-year developmental testing or survival. \(^{718} \) Results from the cohort with in-hospital cardiac arrest are pending. In their review of the THAPCA trial results, the pediatric task force of the International Liaison Committee on Resuscitation (the group responsible for the scientific consensus that supports the AHA PALS guidelines) noted that the study was underpowered to demonstrate improvement in survival with good neurological outcome and also noted that the Kaplan-Meier survival curves in the appendix of the published study showed a trend toward better outcomes at the lower (hypothermia) temperature range, \(^{398} \) which suggests that therapeutic hypothermia might improve outcome in some patients. The protocols chosen for the THAPCA trial represent 2 potential protocols for targeted temperature management.

Two observational studies found that therapeutic hypothermia tended to be applied in the sickest children after resuscitation with a wide range of target temperatures and durations used in the absence of a protocol. \(^{719,720} \) In one case series, >75% of study subjects had recent cardiac surgery, and 70% of those children...
had a cardiac pathogenesis that led to their arrest; hypothermia did not lead to improved outcomes in these patients.

Recommendations for Targeted Temperature Management

On the basis of available evidence, the AHA 2015 PALS guidelines update recommended continuous measurement of temperature in the first 5 days after ROSC after any cardiac arrest, with aggressive treatment of fever (temperature 38°C or higher). In addition, the guidelines update noted that it is reasonable for infants and children who remain comatose after out-of-hospital cardiac arrest to either maintain 5 days of continuous normothermia (36°C to 37.5°C) or 2 days of initial continuous hypothermia (32°C to 34°C) followed by 3 days of continuous normothermia (36°C to 37.5°C). For infants and children who remain comatose after in-hospital cardiac arrest, there was insufficient evidence (pending publication of results from the multi-institutional study) to recommend cooling versus maintenance of normothermia.1

There are no data to guide the mechanism of hypothermia induction or rewarming details or the best mechanism to treat fever. In the 2010 PALS guidelines, the AHA recommended avoidance of rewarming from 32°C to 34°C faster than 0.5°C every 2 hours unless the patient requires rapid rewarming for clinical reasons.4

Methods to control fever include the use of a cooling blanket, ice packs, cold saline infusion, tepid baths, and ECLS circuit.86,722 Pharmacological interventions are unproven in the pediatric population, but acetaminophen can be helpful to prevent fever after ischemia.723,724

When determining the best route for targeted temperature management, providers should carefully consider the known and potential risks of hypothermia in children with CHD, particularly its effects on hemodynamics.225,226 Hypothermia characteristically decreases the heart rate, increases contractility, and increases SVR. Tachycardia, hypotension, and decreased SVR typically develop during rewarming. Overall cardiac output is unevenly affected by hypothermia in infants.227,228 Therapeutic hypothermia appears to have variable effects on PVR, with some researchers reporting no effects and some case reports suggesting an exacerbation of pulmonary hypertension during rewarming.229,230 Sarkar et al reported no difference in pulmonary hypertension between hypothermic and normothermic groups whether using whole body or focal head cooling, and Shankaran et al231 reported no differences in nitric oxide use or ECLS in asphyxiated babies with proven pulmonary hypertension who underwent hypothermia.

Hypothermia can prolong the PR and corrected QT intervals722; however, hypothermia has been applied successfully in patients with congenital QT syndrome and cardiac arrest.732 Significant hypothermia is associated with increased risk of atrial and ventricular arrhythmias, but there is no evidence in the neonatal or adult randomized controlled trials that hypothermia (32°C–34°C) subjects had more clinically significant arrhythmias than normothermia subjects (aside from sinus bradycardia).726,734,735 Additionally, in pediatric cardiac arrest, children who were treated with hypothermia had fewer rearrests.719 To reduce the incidence of arrhythmia during therapeutic hypothermia, it can be helpful to provide adequate sedation and analgesia to lessen endogenous catecholamine release, to promptly treat acidosis and electrolyte disturbances, and to avoid medications that could exacerbate or prolong the QT interval.

Gaps in Knowledge

Prospective studies of the validity of specific MRI findings on predicting future neuromotor or cognitive deficits are lacking in pediatrics. Because a large proportion of seizures after cardiac arrest are electrographic only (not clinically apparent), there is a demonstrated need to perform continuous electroencephalography to detect seizures. Although the presence of seizures after cardiac arrest has been associated with increased risk of death, it is unclear whether detecting and treating the seizures with anticonvulsant agents actually improves neurocognitive outcomes. Possible unintended consequences of anticonvulsant therapy include sedation and lowering of blood pressure.

Commercially available NIRS instruments calculate relative cerebral oxygen saturations without identifying whether oxygen metabolism or D2O are limiting factors. As such, NIRS thresholds may have limited value. Prospective studies of cerebral oxygen saturation trends after cardiac arrest are needed.

Vital questions to be answered regarding the use of targeted temperature management in infants and children after in-hospital cardiac arrest include optimal target temperature and duration of control (hypothermia versus normothermia). In addition, more information will be needed to determine the optimal method of targeted temperature management for children with heart disease who experience in-hospital cardiac arrest.

Recommendations: Post–Cardiac Arrest Stabilization – Neurological Assessment and Management

1. There is no clinical, laboratory, or neurological test that accurately predicts neurological outcome in children who have survived....
cardiac arrest. Brain MRI with other clinical, laboratory, and neurological tests may be considered to assist in neuroprognostication (Class IIb; Level of Evidence C).

2. The use of head CT or ultrasound may be considered in the child or infant after cardiac arrest to assess for cerebral edema, impending herniation syndromes, or intracranial hemorrhage (Class IIb; Level of Evidence C).

3. Brain MRI can be useful to diagnose acute brain injury that results from cardiac arrest; however, children with CHD may have preexisting white matter changes and other neuroanatomic abnormalities (Class IIa; Level of Evidence B).

4. After cardiac arrest, continuous electroencephalography monitoring may be helpful to identify clinically occult seizures and status epilepticus in children who have an unreliable neurological examination or who remain comatose (Class IIa; Level of Evidence B).

5. Seizure detection and management can be considered to prevent secondary brain insult after cardiac arrest (Class IIb; Level of Evidence C).

6. After resuscitation from pediatric cardiac arrest, the use of NIRS to assess and manage cerebral DO2 may be considered (Class IIb; Level of Evidence B).

7. After resuscitation from pediatric cardiac arrest, oxygen administration tailored to target the “appropriate” oxygen saturation for the individual patient can be beneficial (Class IIa; Level of Evidence B).

8. It is important to avoid hyperoxia in newborns or excessive arterial oxygen saturation in patients at risk for pulmonary overcirculation (Class III: Harm; Level of Evidence B). (For further information, see Single-Ventricle Lesions.)

9. After resuscitation from pediatric cardiac arrest, it is reasonable to target normocapnia (Class IIa; Level of Evidence B).

10. After resuscitation from pediatric cardiac arrest, continuous core temperature monitoring is recommended (Class I; Level of Evidence C).

11. After resuscitation from pediatric cardiac arrest, management strategies to prevent and treat hyperthermia are recommended for all patients to minimize secondary neurological injury (Class I; Level of Evidence B).

12. For neuroprotection for children who remain comatose after resuscitation from out-of-hospital pediatric cardiac arrest, targeted temperature management with either strict maintenance of normothermia (36°C–37.5°C) for 5 days or 2 days of hypothermia (32°C–34°C) followed by 3 days of normothermia (36°C–37.5°C) is reasonable (Class IIa; Level of Evidence B).

Acute Kidney Injury Management

Organ dysfunction is common after resuscitation from cardiac arrest, and the kidney is very susceptible to ischemic injury. Although the impact and prognosis of acute kidney injury (AKI) have been well described in other forms of ischemia, such as cardiopulmonary bypass, and in other critical illnesses, such as sepsis, the incidence and outcome of AKI after cardiac arrest have not been well described. In a recent series of 311 adults who survived out-of-hospital cardiac arrest, more than one-third had some degree of postresuscitation renal dysfunction. In other critical illnesses, AKI has been independently associated with worse short- and long-term outcomes, including higher mortality. As a result, measures to prevent or attenuate AKI will likely be beneficial.

The diagnosis of AKI has been made difficult by a lack of a “gold standard” diagnostic test. The serum creatinine concentration is influenced by a number of factors, including fluid status and nutritional state, and is unreliable in the acute setting. Additionally, the reported incidence of AKI has varied greatly in the absence of a standard consensus definition. These challenges led to the proposed RIFLE criteria. The RIFLE consensus definition is a mnemonic for 3 levels of severity (risk, injury, and failure) and 2 outcomes (loss and end-stage kidney disease). These criteria have been validated in critically ill adults and children. In 2012, to further refine AKI definition and achieve consistent terminology, KDIGO (Kidney Disease: Improving Global Outcomes) created guidelines for the evaluation and management of AKI, including a definition and classification of AKI. AKI diagnosis with the KDIGO guidelines can be made by oliguria or creatinine elevation criteria. Importantly, the KDIGO definition of AKI was not modified for pediatric patients. More recently, novel serum and urine biomarkers have been discovered and validated for the early diagnosis of AKI. The theoretical advantage of using these biomarkers is the opportunity for very early diagnosis of AKI, before irreversible damage has occurred. This could enable attenuation of the injury or improved recovery via therapeutic intervention.

Despite multiple studies of and guidelines for management of AKI, there are no evidence-based
recommendations for prevention and treatment of ischemic AKI. Current management involves supportive care, including optimizing hemodynamics to maintain renal perfusion, with careful balancing of fluid status to optimize intravascular volume without fluid overload, and avoiding nephrotoxins (including medications). In studies of AKI in other critical illnesses, the use of sodium bicarbonate and N-acetylcysteine for emergency procedures using contrast media and the judicious use of hemofiltration have been beneficial, but these have not been specifically evaluated after cardiac arrest. Similarly, although the use of renal replacement therapy for the prevention or early treatment of fluid overload has reduced mortality in other forms of AKI, the frequency of use and ideal timing for renal replacement therapy in the post–cardiac arrest care of children with heart disease has not been studied.

The response of the kidney to therapeutic hypothermia after cardiac arrest is unclear. A retrospective review of asphyxiated newborns treated with therapeutic hypothermia suggested a lower incidence of AKI than in historical reports. In a systematic review of adult trials, however, therapeutic hypothermia was not associated with a reduced incidence of AKI or reduced need for dialysis after cardiac arrest. However, different definitions and rates of AKI, differences in mortality rates, and uncertainty about the optimal target cooling temperature confound conclusions.

Our understanding of AKI after cardiac arrest is incomplete. Predictive factors and diagnosis and treatment of AKI have been limited by a suboptimal diagnostic definition. Although progress has been made in standardization of nomenclature, the availability of biomarkers for more rapid and definitive diagnosis should facilitate studies addressing the epidemiology and potential therapies of AKI after cardiac arrest. In addition, the inclusion of AKI as an outcome in therapeutic studies after cardiac arrest should provide additional information.

Gaps in Knowledge
The diagnosis of AKI is limited by a suboptimal diagnostic standard. In addition, no proven therapies for treatment of ischemic AKI have been established.

Recommendations: Post–Cardiac Arrest Stabilization – AKI Management

1. Supportive care can be useful after ischemic AKI, including optimizing cardiac output, maintaining adequate renal perfusion pressure, optimizing fluid balance while avoiding fluid overload, and limiting use of nephrotoxins (Class IIa; Level of Evidence B).

Endocrine Management

Glycemic Control
Both hypoglycemia and hyperglycemia are associated with poor outcome in critically ill children. Van den Berghe and colleagues reported that controlling blood glucose in stress hyperglycemia to within normal limits in critically ill adult patients improved survival and reduced complications compared with patients allocated to standard care at higher glucose levels; however, other trials in critically ill adults, including a large international multicenter study, failed to clearly demonstrate improved outcomes with tight glucose control, so the role of glycemic control in adult critical care remains hotly debated.

There are few data available on which to base guidelines for the management of glucose after cardiac arrest in children. In a single-center retrospective cohort study of 378 consecutive pediatric cardiovascular surgical patients, longer duration of hyperglycemia (defined as hours with serum glucose >126 mg/dL) was associated with longer postoperative hospitalization. In the 72 hours after surgery, average glucose <110 mg/dL or >143 mg/dL and minimum glucose ≤75 mg/dL or peak glucose level ≥250 mg/dL were all associated with a greater adjusted odds of reaching the composite morbidity-mortality endpoint (eg, mortality, nosocomial infection, cardiovascular failure requiring ECMO, acute renal failure requiring dialysis, hepatic dysfunction, or new central nervous system injury). The authors concluded that in children undergoing complex congenital heart surgery, the optimal postoperative glucose range may be 110 to 126 mg/dL. Although there was a high incidence of hypoglycemia, a subsequent follow-up study of neurocognitive outcomes found no important differences between children who were hypoglycemic and those who were not. Tight glucose control in children after cardiac surgery was not associated with reduced mortality but with reduced postoperative troponin levels and heart-type fatty acid protein and reduced blood lactate concentrations. Two large randomized controlled trials have addressed glucose control after pediatric cardiac surgery. Agus et al demonstrated that tight glucose control did not significantly change mortality, length of stay, infection rate, or other measures of organ failure in nearly 1000 children. In a series of nearly 1400 children in the United Kingdom (60% were postoperative), Macrae et al found no difference in the number of days alive and free from mechanical ventilation at 30 days after randomization between those with and without tight glycemic control. Episodes of severe hypoglycemia (≤36 mg/dL) occurred in a higher proportion of those in the tight glucose control group that of those receiving conventional management. However, hos-
pital discharge occurred significantly earlier in those patients with tight glucose control in the noncardiac surgical cohort.753

All of these studies differed in design, with markedly different patterns in the use of insulin. Further studies of glucose control and insulin administration regimens in children will be required before definitive recommendations can be made concerning the utility of glucose control algorithms in children, including those after cardiac arrest.

Several animal studies, but no clinical studies in children, have shown poorer outcomes when glucose is given after or during cardiac arrest. There is also evidence in studies of neonatal hypoxia-ischemia of an association between hypoglycemia and subsequent brain injury.754–757 Tight glucose control has been shown to increase global glucose uptake and to increase cerebral metabolic crisis after traumatic brain injury,758 although the associated mechanisms are unclear. A further recent report concluded that hypoglycemia aggravates critical illness–induced neurocognitive dysfunction to a significant extent.753,759

Detection and Management of Adrenal Insufficiency

There are insufficient data regarding the incidence of adrenal insufficiency after cardiac arrest in children with heart disease to accurately assess the scope of the problem or to make firm treatment recommendations. Several studies have shown that relative adrenal insufficiency is common after out-of-hospital cardiac arrest in adults and is associated with worse outcomes, including higher mortality.760–762 It is uncertain whether the administration of hydrocortisone or other forms of corticosteroid is beneficial in this group. A recent randomized controlled adult trial compared survival after conventional cardiac arrest management to the administration of vasopressin and a single dose of methylprednisolone during the arrest, followed by a course of hydrocortisone.766 Higher rates of both ROSC and survival-to-hospital-discharge with favorable neurological outcome were seen in the treatment arm.766

There are several reasons for caution in extrapolating adult data to children, one of which concerns the definition of hypoadrenalism. The use of corticotrophin stimulation tests and the use of arbitrary levels of total or free cortisol to define hypoadrenalism have not been validated in children with low cardiac output in the pediatric cardiac ICU.400,767 No consistent relationship between total or free cortisol levels and hemodynamic status has been observed in children with heart disease after cardiopulmonary bypass,399,768,769 and an accurate and reliable definition of hypoadrenalism in children with cardiac disease has not yet been established.

Steroid administration has been associated with short-term hemodynamic benefits for children in various shock states, including LCOS after cardiac surgery. Observed benefits included an increase in mean arterial pressure and a decrease in both heart rate and inotrope requirements.401,402,767 The adverse effects from corticosteroid administration are well established. Cumulative corticosteroid dosing in children with heart disease undergoing surgery has been associated with increased risk of postoperative infection and prolonged hospitalization.403,404

The uncertain long-term benefits and potential harm associated with corticosteroid use prohibits their routine administration after cardiac arrest in children with heart disease. However, in patients with established risk factors for hypoadrenalism or in patients with catecholamine-resistant shock, it is reasonable to use low-dose hydrocortisone (2–4 mg·kg-1·d-1) or an equivalent and assess the impact on short-term hemodynamic status.

Gaps in Knowledge

To date, trials of tight glycemic control in children have focused mainly on levels of glycemia. Although they differ to some extent in target glycemic control limits, these studies differed significantly in insulin administration regimens. It is not known whether different insulin administration regimens might have led to different results. Future studies should therefore focus on the roles of both glucose and insulin on the outcome and investigate whether there are identifiable subgroups of cardiac patients, including those requiring CPR, who might predictably benefit from glucose control or insulin treatment. The potential mechanisms by which hyperglycemia may adversely influence clinical outcomes in critically ill children are incompletely understood.

No consistent definition of hypoadrenalism has been validated in children with heart disease. The incidence of hypoadrenalism after cardiac arrest in these patients is unknown. It is unclear what, if any, are the indications for corticosteroid administration in children with heart disease, either during or after cardiac arrest.

Recommendations: Post–Cardiac Arrest Stabilization – Endocrine Management

1. After CPR in children with heart disease, hypoglycemia is harmful and should be avoided (Class III: Harm; Level of Evidence B).

2. The administration of low-dose hydrocortisone to children with heart disease may be considered in postarrest, catecholamine-resistant shock (Class IIb; Level of Evidence C).
MEDICAL-LEGAL AND ETHICAL CONSIDERATIONS

Ethical decision making during the resuscitation of neonates, infant, children, and adults with CHD must be based on clear communication and a sound physician-nurse-patient-family relationship, as well as knowledge of ethical principles (including beneficence, nonmaleficence, and autonomy), justice, and an understanding of current standards of care for patients with CHD. Guidelines for healthcare providers who are faced with ethical and legal considerations during acute resuscitation have been provided in the 2010 AHA Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care and in the 2015 AHA Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care.

On the basis of the Born Alive Infant Protection Act, any newborn infant believed to be alive, no matter how severe the underlying disease or pathology, has the right to be assessed by a healthcare provider for viability. The decision to not initiate resuscitative measures and cardiac interventions is based on life-limiting comorbidities rather than the CHD alone. Patients with most forms of CHD, including HLHS, have a reasonable likelihood of survival. Therefore, an independent decision by a clinician to not resuscitate and not initiate cardiac intervention based on CHD alone is not considered to be standard of care. Furthermore, based on the Baby Doe rulings, decisions on whether to initiate care, continue intensive care management, or resuscitate cannot be based solely on the perceived future quality of life or judgment made by clinicians. Initiation of termination of intensive care management or a resuscitation event should be based on futility of care. If the medical condition is considered futile (in that no medical or surgical management will prevent the infant from having an inevitable death, or the chance of survival is extremely low and the burden of care and potential for suffering is high), redirection of care should be sought. Note that “futility of care” in any given case may not be easy to define. Clinicians and parents might assess the parameters that determine futility differently, and they may disagree whether futility has been reached. Parents/guardians and families may see burden of care quite differently, which may modify the overall assessment of futility parameters. If after resuscitation, discussions between parents/guardians for the child and the care team relative to futility and possible termination of care are at an impasse, an ethics consultation can be helpful.

Patients with CHD are often critically ill, and invasive life-sustaining therapies, including CPR and ECLS, might be necessary to achieve good outcomes. Timely multidisciplinary evaluation of the individual patient that considers all interventional and medical options is expected before a decision about futility of care is made.

Once futility of care is present, the “do no harm” principle (nonmaleficence) becomes relevant, because the clinician is then providing treatment that would merely prolong dying and/or not be effective in ameliorating or correcting all the infant’s life-threatening conditions.

As noted at the beginning of this consensus statement, there are considerable pathophysiological considerations in patients with CHD that alter the effectiveness of resuscitation in the event of a cardiac arrest. The AHA PALS recommendations were developed for infants and children with normal cardiac anatomy. It is important to emphasize that any such recommendations are guidelines, based on the best available evidence at the time, and they will continue to be revised. They are not to be viewed as hard rules. There are specific circumstances in which such recommendations will need to be modified, such as patients with single-ventricle physiology. More important, the effectiveness of resuscitation must always be monitored, and the technique (including the rate of chest compressions, the specific drugs used, and the use of ECLS) must be modified according to the known underlying pathophysiology and patient response. Therefore, clinicians are not vulnerable to legal penalty if they deviate from the PALS guidelines as written. Nevertheless, it is very important that managers or leaders of resuscitation events explain to the team the rationale for modification of techniques and priorities during resuscitation and that this information be clearly documented in the subsequent debriefing and notes describing the event.

Gaps in Knowledge

There appears to be considerable variation in counseling practices among professionals regarding infants with CHD. Future work is needed to establish the expectation of regular multidisciplinary ethical discussions as part of standard of care for patients with CHD. The more data available to establish best practices, the better the cardiovascular team can evaluate their outcomes and make recommendations to families.

Recommendations: Medical-Legal and Ethical Considerations

1. Discussions with families and patients with CHD about treatment options, outcomes, and “futility of care” should be multidisciplinary and occur when possible before acute resuscitation events (Class IIa; Level of Evidence C).

2. Team debriefing and documentation of resuscitation efforts should be recorded accurately (Class I; Level of Evidence C).
SUMMARY

Pediatric patients with congenital and acquired heart disease pose unique challenges in the periarrest period. The risk of cardiac arrest is increased as a result of potential imbalance between SBF and PBF, altered ventricular volume and pressure loads, systolic and diastolic ventricular dysfunction, pulmonary hypertension, valvar stenosis and insufficiency, and other alterations in hemodynamics. These perturbations can evolve rapidly, producing an inadequate balance between oxygen supply and demand, resulting in cardiac arrest. An understanding of the evolving physiology is critical to prevent cardiac arrest in this high-risk population. Thus, close invasive and noninvasive monitoring and anticipatory care, including a low threshold for transfer to intensive care, cardiology/intensive care consultation, or hospital readmission, are important to avoid hemodynamic instability and to prevent cardiac arrest.

Once cardiac arrest occurs, it is appropriate to initiate standard resuscitation measures, but these could be unsuccessful because the child’s underlying physiology can limit effective cardiac output and Do2 during chest compressions. As a result, clinicians must individualize resuscitation strategies in light of each patient’s cardiovascular anatomy and physiology. Early consideration of other interventions, including ECPR, can be lifesaving.

Disclosures

Writing Group Disclosures

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speaker’s Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bradley S. Marino</td>
<td>Ann & Robert H. Lurie Children’s Hospital of Chicago, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Peter C. Laussen</td>
<td>Hospital for Sick Children, Critical Care Medicine, Toronto (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ian Adatia</td>
<td>University of Alberta Pediatrics, Edmonton (Canada)</td>
<td>Actelion; NHLBI†; Mallinckrodt Pharmaceuticals†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Eli Lilly*</td>
<td>None</td>
</tr>
<tr>
<td>Dianne L. Atkins</td>
<td>University of Iowa, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Paul A. Checchia</td>
<td>Texas Children’s Hospital, Pediatrics</td>
<td>NIH*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Allan DeCaen</td>
<td>University of Alberta, Pediatrics, Edmonton (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ericka L. Fink</td>
<td>Children’s Hospital of Pittsburgh of UPMC, Critical Care Medicine</td>
<td>PCORI; NIH†</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

(Continued)
Writing Group Disclosures Continued

<table>
<thead>
<tr>
<th>Writing Group Member</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speaker's Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mary Fran Hazinski</td>
<td>Vanderbilt University, School of Nursing</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>George M. Hoffman</td>
<td>Children's Hospital of Wisconsin, Anesthesia</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>John L. Jefferies</td>
<td>Cincinnati Children's Hospital Medical Center, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Monica Kleinman</td>
<td>Children's Hospital, Boston, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>American Heart Association*</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Progeria Research Foundation†; NEAR-4-KIDS AHRQ*; Mooney Family Foundation†; NIH-NHLBI ROT Thiamine in Resuscitation*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Children's Hospital Anesthesia Foundation†</td>
<td></td>
</tr>
<tr>
<td>Catherine D. Krawczeski</td>
<td>Lucile Packard Children's Hospital Stanford</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Stanford University†</td>
<td></td>
</tr>
<tr>
<td>Daniel J. Licht</td>
<td>The Children's Hospital of Philadelphia, Pediatrics</td>
<td>NIH*</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Graeme MacLaren</td>
<td>National University Hospital (Singapore)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Duncan Macrae</td>
<td>Royal Brompton and Harefield Hospitals, London (United Kingdom)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Chitra Ravishankar</td>
<td>Children's Hospital of Philadelphia, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Danone Medical Nutrition Trading*</td>
<td>None</td>
</tr>
<tr>
<td>Ricardo A. Samson</td>
<td>Children's Heart Center-Nevada</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Sarah Tabbutt</td>
<td>University of California, San Francisco, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Ravi R. Thiagarajan</td>
<td>Children's Hospital, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>Co-Chair of Extracorporeal Life Support Organization and Registry*</td>
<td>None</td>
<td>None</td>
<td>Bristol-Myers Squibb*; Pfizer*; rEVO Biologics*</td>
<td>None</td>
</tr>
<tr>
<td>Rune Toms</td>
<td>University of Alabama at Birmingham, Pediatrics</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>James Tweddell</td>
<td>Cincinnati Children's Hospital Medical Center, Surgery</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Finley Law Firm, PC, Des Moines, IA*; Dickie, McCarney & Chilcote, PC, Pittsburgh, PA*</td>
<td>None</td>
<td>CorMatrix*</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of writing group members that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all members of the writing group are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person’s gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $10,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

*Modest.
†Significant.

Reviewer Disclosures

<table>
<thead>
<tr>
<th>Reviewer</th>
<th>Employment</th>
<th>Research Grant</th>
<th>Other Research Support</th>
<th>Speakers' Bureau/ Honoraria</th>
<th>Expert Witness</th>
<th>Ownership Interest</th>
<th>Consultant/ Advisory Board</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>John M. Costello</td>
<td>Ann & Robert H. Lurie Children's Hospital of Chicago</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Thomas J. Kulik</td>
<td>Boston Children's Hospital</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Steven M. Schwartz</td>
<td>The Hospital for Sick Children (Canada)</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

This table represents the relationships of reviewers that may be perceived as actual or reasonably perceived conflicts of interest as reported on the Disclosure Questionnaire, which all reviewers are required to complete and submit. A relationship is considered to be “significant” if (a) the person receives $10,000 or more during any 12-month period, or 5% or more of the person's gross income; or (b) the person owns 5% or more of the voting stock or share of the entity, or owns $100,000 or more of the fair market value of the entity. A relationship is considered to be “modest” if it is less than “significant” under the preceding definition.

REFERENCES

19. Tilly J, Hoffman G. Worksheet for Evidence-Based Review of Science for Emergency Cardiac Care: Resuscitation of the Patient With Single Ventricle. Worksheet No. Peds-0595. International Liaison Committee on Re-

Circulation. 2018;137:90–90. doi: 10.1161/CIR.0000000000000524

TBD TBD, 2018 e71

Downloaded from http://circ.ahajournals.org/ by Guest on April 22, 2018

110. Seghaye MC, Duchateau J, Grabitz RG, Faymonville ML, Mesmer BJ, Buro-Rathmann K, von Bernuth G. Complement activation...

hypertension in the Netherlands: epidemiology and characterization during

167. Atz AM, Adatia I, Wessel DL. Rebound pulmonary hypertension after

168. Lavoie A, Hall JB, Olson DM, Wylam ME. Life-threatening effects of discon-
tinuing inhaled nitric oxide in severe respiratory failure. Am J Respir Crit Care

169. Miller OL, Tang SF, Keech A, Celemajer DS. Rebound pulmonary hyperten-

170. Namachiyaam P, Theilen U, Butt WW, Cooper SM, Penny DJ, Shekerdemian LS. Sildenafil prevents rebound pulmonary hypertension after

171. Humpl T, Neyt J, Erickson S, Armano R, Holby H, Adatia I. Sildenafil ther-

172. Abman SH, Griebel JL, Parker DK, Schmidt JM, Swanton D, Kinsella JP. Acute effects of inhaled nitric oxide in children with severe hypoxemic

175. Carmonso MI, Friessen RH, Doran A, Ivy DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac sur-

176. Taylor CJ, Derric G, McEwan A, Haworth SG, Sury MR. Risk of cardiac catheterization under anaesthesia in children with pulmonary hyperten-

177. van der Gaarden B, Lister NA, McKenzie IM, Martin N, Ragg PG, Sheppard SJ, Davidson AJ. Postoperative mortality in children after 101,885 anes-

178. Haworth SG, Reid L. Structural study of pulmonary circulation and of

180. Yung D, Wiltzit AC, Rosenwieg EB, Kerstein M, Ganz J, Bart R. Outcomes in

184. Börner M, Beghetti M, Ricci B, Barbato S, Petre E, Friedli B. Relief of

188. Wessel DL, Adatia I, Giglia TM, Thompson JE, Kulik TJ. Use of inhaled nitric oxide and acetylene in the evaluation of pulmonary hyperten-

194. Li F, Xia W, Yuan S, Sun R. Acute inhibition of Rho-kinase attenuates pul-

195. Neutze JM, Ishikawa T, Clarkson PM, Calder AL, Barratt-Boyes BG, Keen MR. Assessment and follow-up of patients with venous sep-

Circulation. 2018;137:990–999. doi: 10.1161/CIRCULATIONAHA.118.035024.

Cardiopulmonary Resuscitation in Infants and Children With Cardiac Disease: A Scientific Statement From the American Heart Association

Bradley S. Marino, Sarah Tabbutt, Graeme MacLaren, Mary Fran Hazinski, Ian Adatia, Dianne L. Atkins, Paul A. Checchia, Allan DeCaen, Ericka L. Fink, George M. Hoffman, John L. Jefferies, Monica Kleinman, Catherine D. Krawczeski, Daniel J. Licht, Duncan Macrae, Chitra Ravishankar, Ricardo A. Samson, Ravi R. Thiagarajan, Rune Toms, James Tweddell, Peter C. Laussen and On behalf of the American Heart Association Congenital Cardiac Defects Committee of the Council on Cardiovascular Disease in the Young; Council on Clinical Cardiology; Council on Cardiovascular and Stroke Nursing; Council on Cardiovascular Surgery and Anesthesia; and Emergency Cardiovascular Care Committee

Circulation. published online April 23, 2018;
Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2018 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/early/2018/04/20/CIR.0000000000000524

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/